User interface language: English | Español

Date None Specimen Marks available 4 Reference code SPNone.3dm.hl.TZ0.1
Level HL only Paper Paper 3 Discrete mathematics Time zone TZ0
Command term Find Question number 1 Adapted from N/A

Question

Use the Euclidean algorithm to find the greatest common divisor of 259 and 581.

[4]
a.

Hence, or otherwise, find the general solution to the diophantine equation 259x + 581y = 7 .

[5]
b.

Markscheme

\(581 = 2 \times 259 + 63\)     M1A1

\(259 = 4 \times 63 + 7\)     A1

\(63 = 9 \times 7\)

the GCD is therefore 7     A1

[4 marks]

a.

consider

\(7 = 259 - 4 \times 63\)     M1

\( = 259 - 4 \times (581 - 2 \times 259)\)     A1

\( = 259 \times 9 + 581 \times ( - 4)\)     A1

the general solution is therefore

\(x = 9 + 83n;{\text{ }}y = - 4 - 37n{\text{ where }}n \in \mathbb{Z}\)     M1A1

Notes: Accept solutions laid out in tabular form. Dividing the diophantine equation by 7 is an equally valid method.

 

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 10 - Option: Discrete mathematics » 10.2 » Division and Euclidean algorithms.

View options