Date | May 2017 | Marks available | 4 | Reference code | 17M.1.hl.TZ1.5 |
Level | HL only | Paper | 1 | Time zone | TZ1 |
Command term | Determine | Question number | 5 | Adapted from | N/A |
Question
ABCD is a parallelogram, where \(\overrightarrow {{\text{AB}}} \) = –i + 2j + 3k and \(\overrightarrow {{\text{AD}}} \) = 4i – j – 2k.
Find the area of the parallelogram ABCD.
By using a suitable scalar product of two vectors, determine whether \({\rm{A\hat BC}}\) is acute or obtuse.
Markscheme
\(\overrightarrow {{\text{AB}}} \times \overrightarrow {{\text{AD}}} = - \)i \( + 10\)j – 7k M1A1
\({\text{area}} = \left| {\overrightarrow {{\text{AB}}} \times \overrightarrow {{\text{AD}}} } \right|{\text{ = }}\sqrt {{1^2} + {{10}^2} + {7^2}} \)
\( = 5\sqrt 6 \left( {\sqrt {150} } \right)\) A1
[3 marks]
METHOD 1
\(\overrightarrow {{\text{AB}}} \bullet \overrightarrow {{\text{AD}}} = - 4 - 2 - 6\) M1A1
\( = - 12\)
considering the sign of the answer
\(\overrightarrow {{\text{AB}}} \bullet \overrightarrow {{\text{AD}}} < 0\), therefore angle \({\rm{D\hat AB}}\) is obtuse M1
(as it is a parallelogram), \({\rm{A\hat BC}}\) is acute A1
[4 marks]
METHOD 2
\(\overrightarrow {{\text{BA}}} \bullet \overrightarrow {{\text{BC}}} = + 4 + 2 + 6\) M1A1
\( = 12\) considering the sign of the answer M1
\(\overrightarrow {{\text{BA}}} \bullet \overrightarrow {{\text{BC}}} > 0 \Rightarrow {\rm{A\hat BC}}\) is acute A1
[4 marks]