User interface language: English | Español

Date May 2017 Marks available 4 Reference code 17M.1.hl.TZ1.5
Level HL only Paper 1 Time zone TZ1
Command term Determine Question number 5 Adapted from N/A

Question

ABCD is a parallelogram, where ABAB = –i + 2j + 3k and ADAD = 4ij – 2k.

Find the area of the parallelogram ABCD.

[3]
a.

By using a suitable scalar product of two vectors, determine whether AˆBCA^BC is acute or obtuse.

[4]
b.

Markscheme

AB×AD=AB×AD=i +10+10j – 7k     M1A1

area=|AB×AD| = 12+102+72area=AB×AD = 12+102+72

 =56(150)=56(150)     A1

[3 marks]

a.

METHOD 1

ABAD=426ABAD=426     M1A1

=12=12

considering the sign of the answer

ABAD<0ABAD<0, therefore angle DˆABD^AB is obtuse     M1

(as it is a parallelogram), AˆBCA^BC is acute     A1

[4 marks]

METHOD 2

BABC=+4+2+6BABC=+4+2+6     M1A1

=12=12 considering the sign of the answer     M1

BABC>0AˆBCBABC>0A^BC is acute     A1

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 4 - Core: Vectors » 4.2
Show 23 related questions

View options