DP Further Mathematics HL Questionbank
6.6
Path: |
Description
[N/A]Directly related questions
- 17M.1.hl.TZ0.2a: Consider the linear congruence \(ax \equiv b(\bmod p)\) where...
- 11M.2.hl.TZ0.4a: Given the linear congruence \(ax \equiv b({\rm{mod}}p)\) , where \(a\) , \(b \in \mathbb{Z} \) ,...
- 08M.2.hl.TZ0.1B.a: Given that \(ax \equiv b(\bmod p)\) where \(a,b,p,x \in {\mathbb{Z}^ + }\) , \(p\) is prime and...
- SPNone.1.hl.TZ0.7a: Given that \(a \equiv b(\bmod p)\) , show that \({a^n} \equiv {b^n}(\bmod p)\) for all...
- SPNone.1.hl.TZ0.7b: Show that \({29^{13}} + {13^{29}}\) is exactly divisible by \(7\).
- 14M.1.hl.TZ0.15: (a) Show that the solution to the linear congruence \(ax \equiv b(\bmod p)\), where...
Sub sections and their related questions
Fermat’s little theorem.
- 11M.2.hl.TZ0.4a: Given the linear congruence \(ax \equiv b({\rm{mod}}p)\) , where \(a\) , \(b \in \mathbb{Z} \) ,...
- 08M.2.hl.TZ0.1B.a: Given that \(ax \equiv b(\bmod p)\) where \(a,b,p,x \in {\mathbb{Z}^ + }\) , \(p\) is prime and...
- SPNone.1.hl.TZ0.7a: Given that \(a \equiv b(\bmod p)\) , show that \({a^n} \equiv {b^n}(\bmod p)\) for all...
- SPNone.1.hl.TZ0.7b: Show that \({29^{13}} + {13^{29}}\) is exactly divisible by \(7\).
- 14M.1.hl.TZ0.15: (a) Show that the solution to the linear congruence \(ax \equiv b(\bmod p)\), where...