Processing math: 0%

User interface language: English | Español

Date None Specimen Marks available 5 Reference code SPNone.1.hl.TZ0.7
Level HL only Paper 1 Time zone TZ0
Command term Show that Question number 7 Adapted from N/A

Question

Given that ab(mod , show that {a^n} \equiv {b^n}(\bmod p) for all n \in {\mathbb{Z}^ + } .

[4]
a.

Show that {29^{13}} + {13^{29}} is exactly divisible by 7.

[5]
b.

Markscheme

a \equiv b(\bmod p) \Rightarrow a = b + pN,N \in \mathbb{Z}      M1

{a^n} = {(b + pN)^n} = {b^n} + n{b^{n - 1}}pN \ldots      M1A1

= {b^n} + pM where M \in \mathbb{Z}     A1

this shows that {a^n} \equiv {b^n}(\bmod p)     AG

[4 marks]

a.

29 \equiv 1(\bmod 7) \Rightarrow {29^{13}} \equiv {1^{13}} \equiv 1(\bmod 7)     M1A1

13 \equiv - 1(\bmod 7) \Rightarrow {13^{29}} \equiv {( - 1)^{29}} \equiv - 1(\bmod 7)     A1

therefore {29^{13}} + {13^{29}} \equiv 1 + ( - 1) \equiv 0(\bmod 7)     M1A1

this shows that {29^{13}} + {13^{29}} is exactly divisible by 7     AG

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Discrete mathematics » 6.6 » Fermat’s little theorem.

View options