Date | None Specimen | Marks available | 5 | Reference code | SPNone.1.hl.TZ0.7 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Show that | Question number | 7 | Adapted from | N/A |
Question
Given that a≡b(mod , show that {a^n} \equiv {b^n}(\bmod p) for all n \in {\mathbb{Z}^ + } .
Show that {29^{13}} + {13^{29}} is exactly divisible by 7.
Markscheme
a \equiv b(\bmod p) \Rightarrow a = b + pN,N \in \mathbb{Z} M1
{a^n} = {(b + pN)^n} = {b^n} + n{b^{n - 1}}pN \ldots M1A1
= {b^n} + pM where M \in \mathbb{Z} A1
this shows that {a^n} \equiv {b^n}(\bmod p) AG
[4 marks]
29 \equiv 1(\bmod 7) \Rightarrow {29^{13}} \equiv {1^{13}} \equiv 1(\bmod 7) M1A1
13 \equiv - 1(\bmod 7) \Rightarrow {13^{29}} \equiv {( - 1)^{29}} \equiv - 1(\bmod 7) A1
therefore {29^{13}} + {13^{29}} \equiv 1 + ( - 1) \equiv 0(\bmod 7) M1A1
this shows that {29^{13}} + {13^{29}} is exactly divisible by 7 AG
[5 marks]