Date | None Specimen | Marks available | 5 | Reference code | SPNone.1.hl.TZ0.7 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Show that | Question number | 7 | Adapted from | N/A |
Question
Given that \(a \equiv b(\bmod p)\) , show that \({a^n} \equiv {b^n}(\bmod p)\) for all \(n \in {\mathbb{Z}^ + }\) .
Show that \({29^{13}} + {13^{29}}\) is exactly divisible by \(7\).
Markscheme
\(a \equiv b(\bmod p) \Rightarrow a = b + pN,N \in \mathbb{Z}\) M1
\({a^n} = {(b + pN)^n} = {b^n} + n{b^{n - 1}}pN \ldots \) M1A1
\( = {b^n} + pM\) where \(M \in \mathbb{Z}\) A1
this shows that \({a^n} \equiv {b^n}(\bmod p)\) AG
[4 marks]
\(29 \equiv 1(\bmod 7) \Rightarrow {29^{13}} \equiv {1^{13}} \equiv 1(\bmod 7)\) M1A1
\(13 \equiv - 1(\bmod 7) \Rightarrow {13^{29}} \equiv {( - 1)^{29}} \equiv - 1(\bmod 7)\) A1
therefore \({29^{13}} + {13^{29}} \equiv 1 + ( - 1) \equiv 0(\bmod 7)\) M1A1
this shows that \({29^{13}} + {13^{29}}\) is exactly divisible by \(7\) AG
[5 marks]