DP Further Mathematics HL Questionbank
4.3
Description
[N/A]Directly related questions
- 18M.1.hl.TZ0.9b.ii: Hence find the inverse function \({f^{ - 1}}\).
- 18M.1.hl.TZ0.9b.i: Show that the function \(f\) is a bijection.
- 18M.1.hl.TZ0.9a: Given that A is the interval \(\left\{ {x\,{\text{:}}\,0 \leqslant x \leqslant 3} \right\}\) and...
- 16M.1.hl.TZ0.1c: Determine whether or not \(f\) is (i) injective; (ii) surjective.
- 16M.1.hl.TZ0.1b: (i) State the value of \(f(1)\), giving a reason for your answer. (ii) Find...
- 15M.1.hl.TZ0.11: Prove that the function \(f:\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}\)...
- 12M.2.hl.TZ0.4A.a: Show that \(f\) is a bijection if \(\boldsymbol{A}\) is non-singular.
- 12M.2.hl.TZ0.4A.b: Suppose now that \(\boldsymbol{A}\) is singular. (i) Write down the relationship between...
- 14M.1.hl.TZ0.13: The function...
Sub sections and their related questions
Functions: injections; surjections; bijections.
- 12M.2.hl.TZ0.4A.a: Show that \(f\) is a bijection if \(\boldsymbol{A}\) is non-singular.
- 12M.2.hl.TZ0.4A.b: Suppose now that \(\boldsymbol{A}\) is singular. (i) Write down the relationship between...
- 14M.1.hl.TZ0.13: The function...
- 15M.1.hl.TZ0.11: Prove that the function \(f:\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}\)...
- 16M.1.hl.TZ0.1b: (i) State the value of \(f(1)\), giving a reason for your answer. (ii) Find...
- 16M.1.hl.TZ0.1c: Determine whether or not \(f\) is (i) injective; (ii) surjective.
- 18M.1.hl.TZ0.9a: Given that A is the interval \(\left\{ {x\,{\text{:}}\,0 \leqslant x \leqslant 3} \right\}\) and...
- 18M.1.hl.TZ0.9b.i: Show that the function \(f\) is a bijection.
- 18M.1.hl.TZ0.9b.ii: Hence find the inverse function \({f^{ - 1}}\).
Composition of functions and inverse functions.
- 18M.1.hl.TZ0.9a: Given that A is the interval \(\left\{ {x\,{\text{:}}\,0 \leqslant x \leqslant 3} \right\}\) and...
- 18M.1.hl.TZ0.9b.i: Show that the function \(f\) is a bijection.
- 18M.1.hl.TZ0.9b.ii: Hence find the inverse function \({f^{ - 1}}\).