Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.1.hl.TZ0.9
Level HL only Paper 1 Time zone TZ0
Command term Hence and Find Question number 9 Adapted from N/A

Question

Let f:R×RR×R be defined by f(x,y)=(x+3y,2xy).

Given that A is the interval {x:0 and B is the interval \left\{ {y\,{\text{:}}\,0 \leqslant x \leqslant 4} \right\} then describe A × B in geometric form.

[3]
a.

Show that the function f is a bijection.

[8]
b.i.

Hence find the inverse function {f^{ - 1}}.

[2]
b.ii.

Markscheme

A × B is a rectangle       A1

vertices at (0, 0), (3, 0), (0, 4) and (3, 4) or equivalent description      A1

and its interior      A1

Note: Accept diagrammatic answers.

[3 marks]

a.

need to prove it is injective and surjective        R1

need to show if f\left( {x,\,y} \right) = f\left( {u,\,v} \right) then \left( {x,\,y} \right) = \left( {u,\,v} \right)      M1

\Rightarrow x + 3y = u + 3v

2x - y = 2u - v      A1

Equation 2 – 2 Equation 1 \Rightarrow y = v

Equation 1 + 3 Equation 2  \Rightarrow x = u    A1

thus \left( {x,\,y} \right) = \left( {u,\,v} \right) \Rightarrow f is injective

let \left( {s,\,t} \right) be any value in the co-domain \mathbb{R} \times \mathbb{R}

we must find \left( {x,\,y} \right) such that f\left( {x,\,y} \right) = \left( {s,\,t} \right)    M1

s = x + 3y and t = 2x - y    M1

\Rightarrow y = \frac{{2s - t}}{7}      A1

and x = \frac{{s + 3t}}{7}      A1

hence f\left( {x,\,y} \right) = \left( {s,\,t} \right) and is therefore surjective

[8 marks]

b.i.

{f^{ - 1}}\left( {x,\,y} \right) = \left( {\frac{{x + 3y}}{7},\,\frac{{2x - y}}{7}} \right)      A1A1

[2 marks]

b.ii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.

Syllabus sections

Topic 4 - Sets, relations and groups » 4.3 » Functions: injections; surjections; bijections.

View options