Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.1.hl.TZ0.9
Level HL only Paper 1 Time zone TZ0
Command term Hence and Find Question number 9 Adapted from N/A

Question

Let f:R×RR×R be defined by f(x,y)=(x+3y,2xy).

Given that A is the interval {x:0x3} and B is the interval {y:0x4} then describe A × B in geometric form.

[3]
a.

Show that the function f is a bijection.

[8]
b.i.

Hence find the inverse function f1.

[2]
b.ii.

Markscheme

A × B is a rectangle       A1

vertices at (0, 0), (3, 0), (0, 4) and (3, 4) or equivalent description      A1

and its interior      A1

Note: Accept diagrammatic answers.

[3 marks]

a.

need to prove it is injective and surjective        R1

need to show if f(x,y)=f(u,v) then (x,y)=(u,v)      M1

x+3y=u+3v

2xy=2uv      A1

Equation 2 – 2 Equation 1 y=v

Equation 1 + 3 Equation 2 x=u    A1

thus (x,y)=(u,v)f is injective

let (s,t) be any value in the co-domain R×R

we must find (x,y) such that f(x,y)=(s,t)    M1

s=x+3y and t=2xy    M1

y=2st7      A1

and x=s+3t7      A1

hence f(x,y)=(s,t) and is therefore surjective

[8 marks]

b.i.

f1(x,y)=(x+3y7,2xy7)      A1A1

[2 marks]

b.ii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.

Syllabus sections

Topic 4 - Sets, relations and groups » 4.3 » Functions: injections; surjections; bijections.

View options