Processing math: 1%

User interface language: English | Español

Date None Specimen Marks available 4 Reference code SPNone.2.hl.TZ0.7
Level HL only Paper 2 Time zone TZ0
Command term Determine and Find Question number 7 Adapted from N/A

Question

The random variable X has cumulative distribution functionF(x)={0x<0(xa)30where a is an unknown parameter. You are given that the mean and variance of X are \frac{{3a}}{4} and \frac{{3{a^2}}}{{80}} respectively. To estimate the value of a , a random sample of n independent observations, {X_1},{X_2}, \ldots {X_n} is taken from the distribution of X .

 

(i)     Find an expression for c in terms of n such that U = c\sum\limits_{i = 1}^n {{X_i}} is an unbiased estimator for a .

(ii)     Determine an expression for {\text{Var}}(U) in this case.

[4]
a.

(i)     Show that {\rm{P}}(Y \le y) = {\left( {\frac{y}{a}} \right)^{3n}},0 \le y \le a and deduce an expression for the probability density function of Y .

(ii)     Find {\rm{E}}(Y) .

(iii)     Show that {\rm{Var}}(Y) = \frac{{3n{a^2}}}{{(3n + 2){{(3n + 1)}^2}}} .

(iv)     Find an expression for d in terms of n such that V = dY is an unbiased estimator for a .

(v)     Determine an expression for {\rm{Var}}(V) in this case.

[16]
b.

Show that \frac{{{\rm{Var}}(U)}}{{{\rm{Var}}(V)}} = \frac{{3n + 2}}{5} and hence state, with a reason, which of U or V is the more efficient estimator for a .

[2]
c.

Markscheme

(i)     {\rm{E}}(U) = c \times n \times \frac{{3a}}{4} = a \Rightarrow c = \frac{4}{{3n}}     M1A1

(ii)     Var(U) = \frac{{16}}{{9{n^2}}} \times n \times \frac{{3{a^2}}}{{80}} = \frac{{{a^2}}}{{15n}}     M1A1

[4 marks]

a.

(i)     {\rm{P}}(Y \le y) = {\rm{P}}({\text{all }}Xs \le y)     M1

= \left[ {\rm{P}} \right.{\left. {(X \le y)} \right]^n}    (A1)

= {\left( {{{\left( {\frac{y}{a}} \right)}^3}} \right)^n}     (A1)

Note: Only one of the two A1 marks above may be implied.

 

= {\left( {\frac{y}{a}} \right)^{3n}}     AG

g(y) = \frac{{\rm{d}}}{{{\rm{d}}y}}{\left( {\frac{y}{a}} \right)^{3n}} = \frac{{3n{y^{3n - 1}}}}{{{a^{3n}}}},(0 < y < a)     M1A1

(g(y) = 0 otherwise)

 

(ii)     {\rm{E}}(Y) = \int_0^a {\frac{{3n{y^{3n}}}}{{{a^{3n}}}}} {\rm{d}}y     M1

= \left[ {\frac{{3n{y^{3n + 1}}}}{{(3n + 1){a^{3n}}}}} \right]_0^a     A1

= \frac{{3na}}{{3n + 1}}     A1

 

(iii)     {\rm{Var}}(Y) = \int_0^a {\frac{{3n{y^{3n + 1}}}}{{{a^{3n}}}}} {\rm{d}}y - {\left( {\frac{{3na}}{{3n + 1}}} \right)^2}     M1

= \left[ {\frac{{3n{y^{3n + 2}}}}{{(3n + 2){a^{3n}}}}} \right]_0^a - {\left( {\frac{{3na}}{{3n + 1}}} \right)^2}     A1

= \frac{{3n{a^2}}}{{3n + 2}} - \frac{{9{n^2}{a^2}}}{{{{(3n + 1)}^2}}}     M1

= \frac{{3n{a^2}(9{n^2} + 6n + 1) - 9{n^2}{a^2}(3n + 2)}}{{(3n + 2)(3n + 1)}}     A1

= \frac{{3n{a^2}}}{{(3n + 2){{(3n + 1)}^2}}}     AG

 

(iv)     {\rm{E}}(V) = d \times \frac{{3na}}{{3n + 1}} = a \Rightarrow d = \frac{{3n + 1}}{{3n}}     M1A1

 

(v)     Var(V) = {\left( {\frac{{3n + 1}}{{3n}}} \right)^2} \times \frac{{3n{a^2}}}{{(3n + 2){{(3n + 1)}^2}}}     M1

= \frac{{{a^2}}}{{3n(3n + 2)}}     A1

 

 

[16 marks]

b.

\frac{{{\rm{Var}}(U)}}{{{\rm{Var}}(V)}} = \frac{{\frac{{{a^2}}}{{15n}}}}{{\frac{{{a^2}}}{{3n(3n + 2)}}}}     A1

= \frac{{3n + 2}}{5}     AG

V is the more efficient estimator because 3n + 2 > 5 (for n > 1 )     R1

[2 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3 - Statistics and probability » 3.3 » Unbiased estimators and estimates.

View options