Date | May 2014 | Marks available | 9 | Reference code | 14M.2.hl.TZ0.1 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Show that | Question number | 1 | Adapted from | N/A |
Question
The random variable \(X\) has the binomial distribution \({\text{B}}(n,{\text{ }}p)\), where \(n > 1\).
Show that
(a) \(\frac{X}{n}\) is an unbiased estimator for \(p\);
(b) \({\left( {\frac{X}{n}} \right)^2}\) is not an unbiased estimator for \({p^2}\);
(c) \(\frac{{X(X - 1)}}{{n(n - 1)}}\) is an unbiased estimator for \({p^2}\).
Markscheme
(a) \({\text{E}}\left( {\frac{X}{n}} \right) = \frac{1}{n}{\text{E}}(X)\) M1
\( = \frac{1}{n} \times np = p\) AG
therefore unbiased AG
[2 marks]
(b) \({\text{E}}\left[ {{{\left( {\frac{X}{n}} \right)}^2}} \right] = \frac{1}{{{n^2}}}\left( {{\text{Var}}(X) + {{[{\text{E}}(X)]}^2}} \right)\) M1A1
\( = \frac{1}{{{n^2}}}\left( {np(1 - p) + {n^2}{p^2}} \right)\) A1
\( \ne {p^2}\) A1
therefore not unbiased AG
[4 marks]
(c) \({\text{E}}\left[ {\left( {\frac{{X(X - 1)}}{{n(n - 1)}}} \right)} \right] = \frac{{{\text{E}}({X^2}) - {\text{E}}(X)}}{{n(n - 1)}}\) M1
\( = \frac{{np(1 - p) + {n^2}{p^2} - np}}{{n(n - 1)}}\) A1
\( = \frac{{n{p^2}(n - 1)}}{{n(n - 1)}}\) A1
\( = {p^2}\)
therefore unbiased AG
[3 marks]