Loading [MathJax]/jax/output/CommonHTML/jax.js

User interface language: English | Español

Date May 2014 Marks available 9 Reference code 14M.2.hl.TZ0.1
Level HL only Paper 2 Time zone TZ0
Command term Show that Question number 1 Adapted from N/A

Question

The random variable X has the binomial distribution B(n, p), where n>1.

Show that

(a)     Xn is an unbiased estimator for p;

(b)     (Xn)2 is not an unbiased estimator for p2;

(c)     X(X1)n(n1) is an unbiased estimator for p2.

Markscheme

(a)     E(Xn)=1nE(X)     M1

=1n×np=p     AG

therefore unbiased     AG

[2 marks]

 

(b)     E[(Xn)2]=1n2(Var(X)+[E(X)]2)     M1A1

=1n2(np(1p)+n2p2)     A1

p2     A1

therefore not unbiased     AG

[4 marks]

 

(c)     E[(X(X1)n(n1))]=E(X2)E(X)n(n1)     M1

=np(1p)+n2p2npn(n1)     A1

=np2(n1)n(n1)     A1

=p2

therefore unbiased     AG

[3 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3 - Statistics and probability » 3.3 » Unbiased estimators and estimates.

View options