User interface language: English | Español

Date May 2008 Marks available 4 Reference code 08M.1.hl.TZ0.1
Level HL only Paper 1 Time zone TZ0
Command term Find and Write down Question number 1 Adapted from N/A

Question

The above diagram shows the weighted graph \(G\).

Determine whether or not \(G\) is bipartite.

[2]
a.

(i)     Write down the adjacency matrix for \(G\).

(ii)     Find the number of distinct walks of length \(4\) beginning and ending at A.

[4]
b.

Markscheme

\(G\) is bipartite     A1

because it contains a triangle.     R1

Note: Award R1 for a valid attempt at showing that the vertices cannot be divided into two disjoint sets.

[2 marks]

a.

(i)

\({\boldsymbol{M}} = \left( {\begin{array}{*{20}{c}}
  0&1&0&0&0&1 \\
  1&0&1&1&1&0 \\
  0&1&0&1&0&0 \\
  0&1&1&0&1&1 \\
  0&1&0&1&0&1 \\
  1&0&0&1&1&0
\end{array}} \right)\)    
A1

(ii)     We require the (A, A) element of \({\boldsymbol{M}^4}\) which is \(13\).     M1A2

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Discrete mathematics » 6.7 » Graphs, vertices, edges, faces. Adjacent vertices, adjacent edges.

View options