User interface language: English | Español

Date May 2013 Marks available 3 Reference code 13M.2.hl.TZ0.5
Level HL only Paper 2 Time zone TZ0
Command term Show that Question number 5 Adapted from N/A

Question

The set \(S\) consists of real numbers r of the form \(r = a + b\sqrt 2 \) , where \(a,b \in \mathbb{Z}\) .

The relation \(R\) is defined on \(S\) by \({r_1}R{r_2}\) if and only if \({a_1} \equiv {a_2}\) (mod2) and \({b_1} \equiv {b_2}\) (mod3), where \({r_1} = {a_1} + {b_1}\sqrt 2 \) and \({r_2} = {a_2} + {b_2}\sqrt 2 \) .

Show that \(R\) is an equivalence relation.

[7]
a.

Show, by giving a counter-example, that the statement \({r_1}R{r_2} \Rightarrow r_1^2Rr_2^2\) is false.

[3]
b.

Determine

(i)     the equivalence class \(E\) containing \(1 + \sqrt 2 \) ;

(ii)     the equivalence class \(F\) containing \(1 - \sqrt 2 \) .

[3]
c.

Show that

(i)     \({(1 + \sqrt 2 )^3} \in F\) ;

(ii)     \({(1 + \sqrt 2 )^6} \in E\) .

[4]
d.

Determine whether the set \(E\) forms a group under

  (i)     the operation of addition;

  (ii)     the operation of multiplication.

[4]
e.

Markscheme

reflexive: if \({r_{}} = {a_{}} + {b_{}}\sqrt 2  \in S\) then \(a \equiv a(\bmod 2)\) and \(b \equiv b(\bmod 3)\)

\(( \Rightarrow rRr)\)     A1

symmetric: if \({r_1}R{r_2}\) then \({a_1} \equiv {a_2}(\bmod 2)\) and \({b_1} \equiv {b_2}(\bmod 3)\) , and     M1

\({a_2} \equiv {a_1}(\bmod 2)\) and \({b_2} \equiv {b_1}(\bmod 3)\) , (so that \({r_2}R{r_1}\) )     A1

transitive: if \({r_1}R{r_2}\) and \({r_2}R{r_3}\) then

\(2|{a_1} - {a_2}\) and \(2|{a_2} - {a_3}\)     M1

\( \Rightarrow 2|{a_1} - {a_2} + {a_2} - {a_3} \Rightarrow 2|{a_1} - {a_3}\)     M1A1

\(3|{b_1} - {b_2}\) and \(3|{b_2} - {b_3}\)

\( \Rightarrow 3|{b_1} - {b_2} + {b_2} - {b_3} \Rightarrow 3|{b_1} - {b_3}( \Rightarrow {r_1}R{r_3})\)     A1AG

[7 marks]

a.

consider, for example, \({r_1} = 1 + \sqrt 2 \) , \({r_2} = 3 + \sqrt 2 \) \(({r_1}R{r_2})\)     M1

Note: Only award M1 if the two numbers are related and neither \(a\) nor \(b = 0\) .

 

\(r_1^2 = 3 + 2\sqrt 2 \) , \(r_2^2 = 11 + 6\sqrt 2 \)     A1

the squares are not equivalent because \(2 \ne 6(\bmod 3)\)     A1

[3 marks]

b.

(i)     \(E = \left\{ {2k + 1 + (3m + 1)\sqrt 2 } :k,m \in \mathbb{Z} \right\}\)     A1A1

 

(ii)     \(F = \left\{ {2k + 1 + (3m - 1)\sqrt 2 } :k,m \in \mathbb{Z} \right\}\)     A1

 

[3 marks]

c.

(i)     \({(1 + \sqrt 2 )^3} = 7 + 5\sqrt 2 \)     A1

\( = 2 \times 3 + 1 + (3 \times 2 - 1)\sqrt 2  \in F\)     R1AG

 

(ii)     \({(1 + \sqrt 2 )^6} = 99 + 70\sqrt 2 \)     A1

\( = 2 \times 49 + 1 + (3 \times 23 + 1)\sqrt 2  \in E\)     R1AG

 

[4 marks]

d.

(i)     \(E\) is not a group under addition     A1

any valid reason eg \(0 \notin E\)     R1

 

(ii)     \(E\) is not a group under multiplication     A1

any valid reason eg \(1 \notin E\)     R1

 

[4 marks]

e.

Examiners report

The majority of candidates earned significant marks on this question. However, many lost marks in part (a) by assuming that equivalence modulo \(2\) and \(3\) is transitive. This is a non-trivial true result but requires proof.

a.

The majority of candidates earned significant marks on this question.

b.

The majority of candidates earned significant marks on this question.

c.

The majority of candidates earned significant marks on this question.

d.

The majority of candidates earned significant marks on this question.

e.

Syllabus sections

Topic 4 - Sets, relations and groups » 4.2 » Relations: equivalence relations; equivalence classes.

View options