User interface language: English | Español

Date May 2009 Marks available 3 Reference code 09M.1.hl.TZ0.1
Level HL only Paper 1 Time zone TZ0
Command term State Question number 1 Adapted from N/A

Question

The relation \(R\) is defined on the set \(\mathbb{Z}\) by \(aRb\) if and only if \(4a + b = 5n\) , where \(a,b,n \in \mathbb{Z}\).

Show that \(R\) is an equivalence relation.

[8]
a.

State the equivalence classes of \(R\) .

[3]
b.

Markscheme

\(4a + b = 5n\) for \(a,b,n \in \mathbb{Z}\)

reflexive:

\(4a + a = 5a\) so \(aRa\) , and \(R\) is reflexive     A1

symmetric:

\(4a + b = 5n\)

\(4b + a = 5b - b + 5a - 4a\)     M1

\( = 5b + 5a - (4a + b)\)     A1

\( = 5m\) so \(bRa\) , and \(R\) is symmetric     A1

transitive:

\(4a + b = 5n\)     M1

\(4b + c = 5k\)     M1

\(4a + 5b + c = 5n + 5k\)     A1

\(4a + c = 5(n + k - b)\) so \(aRc\) , and \(R\) is transitive     A1

therefore \(R\) is an equivalence relation     AG

[8 marks]

a.

equivalence classes are

\(\left\{ { \ldots , - 10, - 5,0,5,10,\left.  \ldots  \right\}} \right.\)     (M1)

\(\left\{ { \ldots , - 9, - 4,1,6,11,\left.  \ldots  \right\}} \right.\)

\(\left\{ { \ldots , - 8, - 3,2,7,12,\left.  \ldots  \right\}} \right.\)

\(\left\{ { \ldots , - 7, - 2,3,8,13,\left.  \ldots  \right\}} \right.\)

\(\left\{ { \ldots , - 6, - 1,4,9,14,\left.  \ldots  \right\}} \right.\)

or \(\left\{ {\left\langle 0 \right\rangle ,\left\langle 1 \right\rangle ,\left\langle 2 \right\rangle ,\left\langle 3 \right\rangle ,\left. {\left\langle 4 \right\rangle } \right\}} \right.\)     A2

Note: Award A2 for all classes, A1 for at least 2 correct classes.

[3 marks]

b.

Examiners report

Part (a) was generally well done but not always in the most direct manner.

a.

Too many missed the equivalence classes in part (b).

b.

Syllabus sections

Topic 4 - Sets, relations and groups » 4.2 » Relations: equivalence relations; equivalence classes.

View options