Date | May 2014 | Marks available | 12 | Reference code | 14M.1.hl.TZ0.8 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Find and Show that | Question number | 8 | Adapted from | N/A |
Question
The group \(\{ G,{\text{ }} * \} \) has a subgroup \(\{ H,{\text{ }} * \} \). The relation \(R\) is defined, for \(x,{\text{ }}y \in G\), by \(xRy\) if and only if \({x^{ - 1}} * y \in H\).
(a) Show that \(R\) is an equivalence relation.
(b) Given that \(G = \{ 0,{\text{ }} \pm 1,{\text{ }} \pm 2,{\text{ }} \ldots \} \), \(H = \{ 0,{\text{ }} \pm 4,{\text{ }} \pm 8,{\text{ }} \ldots \} \) and \( * \) denotes addition, find the equivalence class containing the number \(3\).
Markscheme
(a) \(\underline {{\text{reflexive}}} \)
\({x^{ - 1}}x = e \in H\) A1
therefore \(xRx\) and \(R\) is reflexive R1
\(\underline {{\text{symmetric}}} \)
Note: Accept the word commutative.
let \(xRy\) so that \({x^{ - 1}}y \in H\) M1
the inverse of \({x^{ - 1}}y\) is \({y^{ - 1}}x \in H\) A1
therefore \(yRx\) and \(R\) is symmetric R1
\(\underline {{\text{transitive}}} \)
let \(xRy\) and \(yRz\) so \({x^{ - 1}}y \in H\) and \({y^{ - 1}}z \in H\) M1
therefore \({x^{ - 1}}y\,{y^{ - 1}}z = {x^{ - 1}}z \in H\) A1
therefore \(xRz\) and \(R\) is transitive R1
hence \(R\) is an equivalence relation AG
[8 marks]
(b) the identity is \(0\) so the inverse of \(3\) is \(-3\) (R1)
the equivalence class of 3 contains \(x\) where \( - 3 + x \in H\) (M1)
\( - 3 + x = 4n{\text{ }}(n \in \mathbb{Z})\) (M1)
\(x = 3 + 4n{\text{ (n}} \in \mathbb{Z})\) A1
Note: Accept \(\{ \ldots - 5,{\text{ }} - 1,{\text{ }}3,{\text{ }}7,{\text{ }} \ldots \} \) or \(x \equiv 3(\bmod 4)\).
Note: If no other relevant working seen award A3 for \(\{ 3 + 4n\} \) or \(\{ \ldots - 5,{\text{ }} - 1,{\text{ }}3,{\text{ }}7,{\text{ }} \ldots \} \) seen anywhere.
[4 marks]