Processing math: 100%

User interface language: English | Español

Date May 2014 Marks available 9 Reference code 14M.1.hl.TZ0.6
Level HL only Paper 1 Time zone TZ0
Command term Determine, Find, and Show that Question number 6 Adapted from N/A

Question

The parabola P has equation y2=4ax. The distinct points U(au2, 2au) and V(av2, 2av) lie on P, where u, v0. Given that UˆOV is a right angle, where O denotes the origin,

(a)     show that v=4μ;

(b)     find expressions for the coordinates of W, the midpoint of [UV], in terms of a and u;

(c)     show that the locus of W, as u varies, is the parabola P with equation y2=2ax8a2;

(d)     determine the coordinates of the vertex of P.

Markscheme

(a)     gradient of OU=2auau2=2u     A1

gradient of OV=2avav2=2v     A1

since the lines are perpendicular,

2u×2v=1     M1

so v=4u     AG

[3 marks]

 

(b)     coordinates of W are (a(u2+v2)2, 2a(u+v)2)     M1

=(a2(u2+16u2), a(u4u))     A1

[2 marks]

 

(c)     putting

x=a2(u2+16u2); y=a(u4u)     M1

it follows that

y2=a2(u2+16u28)     A1

=2ax8a2     AG

 

Note: Accept verification.

 

[2 marks]

(d)     since y2=2a(x4a)     (M1)

the vertex is at (4a, 0)     A1

[2 marks]

Examiners report

[N/A]

Syllabus sections

Topic 2 - Geometry » 2.5 » Finding equations of loci.

View options