Date | May 2017 | Marks available | 3 | Reference code | 17M.2.hl.TZ0.9 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Determine | Question number | 9 | Adapted from | N/A |
Question
The hyperbola with equation \({x^2} - 4xy - 2{y^2} = 3\) is rotated through an acute anticlockwise angle \(\alpha \) about the origin.
The point \((x,{\text{ }}y)\) is rotated through an anticlockwise angle \(\alpha \) about the origin to become the point \((X,{\text{ }}Y)\). Assume that the rotation can be represented by
\[\left[ {\begin{array}{*{20}{c}} X \\ Y \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} a&b \\ c&d \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x \\ y \end{array}} \right].\]
Show, by considering the images of the points \((1,{\text{ }}0)\) and \((0,{\text{ }}1)\) under this rotation that
\[\left[ {\begin{array}{*{20}{c}} a&b \\ c&d \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} {\cos \alpha }&{ - \sin \alpha } \\ {\sin \alpha }&{\cos \alpha } \end{array}} \right].\]
By expressing \((x,{\text{ }}y)\) in terms of \((X,{\text{ }}Y)\), determine the equation of the rotated hyperbola in terms of \(X\) and \(Y\).
Verify that the coefficient of \(XY\) in the equation is zero when \(\tan \alpha = \frac{1}{2}\).
Determine the equation of the rotated hyperbola in this case, giving your answer in the form \(\frac{{{X^2}}}{{{A^2}}} - \frac{{{Y^2}}}{{{B^2}}} = 1\).
Hence find the coordinates of the foci of the hyperbola prior to rotation.
Markscheme
consider \(\left[ {\begin{array}{*{20}{c}} a&b \\ c&d \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1 \\ 0 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} a \\ c \end{array}} \right]\) (M1)
the image of \((1,{\text{ }}0)\) is \((\cos \alpha ,{\text{ }}\sin \alpha )\) A1
therefore \(a = \cos \alpha ,{\text{ }}c = \sin \alpha \) AG
consider \(\left[ {\begin{array}{*{20}{c}} a&b \\ c&d \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 0 \\ 1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} b \\ d \end{array}} \right]\)
the image of \((0,{\text{ }}1)\) is \(( - \sin \alpha ,{\text{ }}\cos \alpha )\) A1
therefore \(b = - \sin \alpha ,{\text{ }}d = \cos \alpha \) AG
[3 marks]
\(\left[ {\begin{array}{*{20}{c}} X \\ Y \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} {\cos \alpha }&{ - \sin \alpha } \\ {\sin \alpha }&{\cos \alpha } \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x \\ y \end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}} {\cos \alpha }&{\sin \alpha } \\ { - \sin \alpha }&{\cos \alpha } \end{array}} \right]\left[ {\begin{array}{*{20}{c}} X \\ Y \end{array}} \right]\)
or \(x = X\cos \alpha + Y\sin \alpha ,{\text{ }}y = - X\sin \alpha + Y\cos \alpha \) A1
substituting in the equation of the hyperbola, M1
\({(X\cos \alpha + Y\sin \alpha )^2} - 4(X\cos \alpha + Y\sin \alpha )( - X\sin \alpha + Y\cos \alpha )\)
\( - 2{( - X\sin \alpha + Y\cos \alpha )^2} = 3\) A1
\({X^2}({\cos ^2}\alpha - 2{\sin ^2}\alpha + 4\sin \alpha \cos \alpha ) + \)
\(XY(2\sin \alpha \cos \alpha - 4{\cos ^2}\alpha + 4{\sin ^2}\alpha + 4\sin \alpha \cos \alpha ) + \)
\({Y^2}({\sin ^2}\alpha - 2{\cos ^2}\alpha - 4\sin \alpha \cos \alpha ) = 3\)
[??? marks]
when \(\tan \alpha = \frac{1}{2},{\text{ }}\sin \alpha = \frac{1}{{\sqrt 5 }}\) and \(\cos \alpha = \frac{2}{{\sqrt 5 }}\) A1
the \(XY{\text{ term}} = 6\sin \alpha \cos \alpha - 4{\cos ^2}\alpha + 4{\sin ^2}\alpha \) M1
\( = 6 \times \frac{1}{{\sqrt 5 }} \times \frac{2}{{\sqrt 5 }} - 4 \times \frac{4}{5} + 4 \times \frac{1}{5}\left( {\frac{{12}}{5} - \frac{{16}}{5} + \frac{4}{5}} \right)\) A1
\( = 0\) AG
[??? marks]
the equation of the rotated hyperbola is
\(2{X^2} - 3{Y^2} = 3\) M1A1
\(\frac{{{X^2}}}{{{{\left( {\sqrt {\frac{3}{2}} } \right)}^2}}} - \frac{{{Y^2}}}{{{{(1)}^2}}} = 1\) A1
\(\left( {{\text{accept }}\frac{{{X^2}}}{{\frac{3}{2}}} - \frac{{{Y^2}}}{1} = 1} \right)\)
[??? marks]
the coordinates of the foci of the rotated hyperbola
are \(\left( { \pm \sqrt {\frac{3}{2} + 1} ,{\text{ }}0} \right) = \left( { \pm \sqrt {\frac{5}{2}} ,{\text{ }}0} \right)\) M1A1
the coordinates of the foci prior to rotation were given by
\(\left[ {\begin{array}{*{20}{c}} {\frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}} \\ { - \frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} { \pm \sqrt {\frac{5}{2}} } \\ 0 \end{array}} \right]\)
M1A1
\(\left[ {\begin{array}{*{20}{c}} { \pm \sqrt 2 } \\ { \mp \frac{1}{{\sqrt 2 }}} \end{array}} \right]\) A1
[??? marks]