User interface language: English | Español

Date May 2017 Marks available 4 Reference code 17M.2.hl.TZ0.3
Level HL only Paper 2 Time zone TZ0
Command term Determine Question number 3 Adapted from N/A

Question

The sequence \(\{ {u_n}\} \) satisfies the second-degree recurrence relation

\[{u_{n + 2}} = {u_{n + 1}} + 6{u_n},{\text{ }}n \in {\mathbb{Z}^ + }.\]

Another sequence \(\{ {v_n}\} \) is such that

\[{v_n} = {u_{2n}},{\text{ }}n \in {\mathbb{Z}^ + }.\]

Write down the auxiliary equation.

[1]
a.i.

Given that \({u_1} = 12,{\text{ }}{u_2} = 6\), show that

\[{u_n} = 2 \times {3^n} - 3 \times {( - 2)^n}.\]

[5]
a.ii.

Determine the value of \(\mathop {\lim }\limits_{n \to \infty } \frac{{{u_n} + {u_{n - 1}}}}{{{u_n} - {u_{n - 1}}}}\).

[4]
a.iii.

Determine the second-degree recurrence relation satisfied by \(\{ {v_n}\} \).

[4]
b.

Markscheme

the auxiliary equation is \({m^2} - m - 6 = 0\) or equivalent     A1

[??? marks]

a.i.

attempt to solve quadratic     (M1)

the roots are \(3,{\text{ }} - 2\)     A1

the general solution is

\({u_n} = A \times {3^n} + B \times {( - 2)^n}\)     A1

initial conditions give 

\(3A - 2B = 12\)

\(9A + 4B = 6\)     M1

the solution is \(A = 2,{\text{ }}B =  - 3\)     A1

\({u_n} = 2 \times {3^n} - 3 \times {( - 2)^n}\)     AG

[??? marks]

a.ii.

\({u_n} + {u_{n - 1}} = 2 \times {3^n} - 3 \times {( - 2)^n} + 2 \times {3^{n - 1}} - 3 \times {( - 2)^{n - 1}}\)     M1

\( = 8 \times {3^{n - 1}} + {\text{multiple of }}{2^{n - 1}}\)     A1

\({u_n} - {u_{n - 1}} = 2 \times {3^n} - 3 \times {( - 2)^n} - 2 \times {3^{n - 1}} + 3 \times {( - 2)^{n - 1}}\)

\( = 4 \times {3^{n - 1}} + {\text{multiple of }}{2^{n - 1}}\)     A1

any evidence of noting that the \({3^{n - 1}}\) terms dominate     R1

\(\mathop {\lim }\limits_{n \to \infty } \frac{{{u_n} + {u_{n - 1}}}}{{{u_n} - {u_{n - 1}}}} = 2\)     A1

[??? marks]

a.iii.

\({v_n} = 2 \times {3^{2n}} - 3 \times {( - 2)^{2n}}\)     M1

\( = 2 \times {9^n} - 3 \times {4^n}\)     A1

the auxiliary equation is

\({m^2} - 13m + 36 = 0\)     A1

the recurrence relation is

\({v_{n + 2}} = 13{v_{n + 1}} - 36{v_n}\)     A1

[4 marks]

b.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
b.

Syllabus sections

Topic 6 - Discrete mathematics » 6.11

View options