Date | None Specimen | Marks available | 9 | Reference code | SPNone.1.hl.TZ0.13 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Obtain | Question number | 13 | Adapted from | N/A |
Question
A sequence \(\left\{ {{u_n}} \right\}\) satisfies the recurrence relation \({u_{n + 2}} = 2{u_{n + 1}} - 5{u_n}\) , \(n \in \mathbb{N}\) . Obtain an expression for \({u_n}\) in terms of n given that \({u_0} = 0\) and \({u_1} = 1\) .
Markscheme
the auxiliary equation is \({m^2} - 2m + 5 = 0\) M1
the roots are \(1 \pm 2{\rm{i}}\) A1
the general solution is \({u_n} = A{\left(1 + 2{\rm{i}}\right)^n} + B{\left(1 - 2{\rm{i}}\right)^n}\) A1
substituting \({u_0} = 0\) and \({u_1} = 1\) M1
\(A + B = 0\)
\(A(1 + 2{\rm{i}}) + B(1 - 2{\rm{i}}) = 1\) A1
Note: Only award above A1 if both equations are correct.
solving
\(A\left(1 + 2{\rm{i}} - 1 + 2{\rm{i}}\right) = 1\) (M1)
\(A = \frac{1}{{4{\rm{i}}}}\) or \( - \frac{{\rm{i}}}{4}\) A1
\(B = - \frac{1}{{4{\rm{i}}}}\) or \(\frac{{\rm{i}}}{4}\) A1
therefore
\({u_n} = \frac{1}{{4{\rm{i}}}}{\left(1 + 2{\rm{i}}\right)^n} - \frac{1}{{4{\rm{i}}}}{\left(1 - 2{\rm{i}}\right)^n}\) or \(\frac{{\rm{i}}}{4}{\left(1 - 2{\rm{i}}\right)^n} - \frac{{\rm{i}}}{4}{\left(1 + 2{\rm{i}}\right)^n}\) A1
[9 marks]