User interface language: English | Español

Date May Specimen Marks available 4 Reference code SPM.1.sl.TZ0.6
Level SL only Paper 1 Time zone TZ0
Command term Calculate Question number 6 Adapted from N/A

Question

The diagram shows a rectangular based right pyramid VABCD in which \({\text{AD}} = 20{\text{ cm}}\), \({\text{DC}} = 15{\text{ cm}}\) and the height of the pyramid, \({\text{VN}} = 30{\text{ cm}}\).

Calculate
(i)     the length of AC;
(ii)    the length of VC.

[4]
a.

Calculate the angle between VC and the base ABCD.

[2]
b.

Markscheme

(i)     \(\sqrt {{{15}^2} + {{20}^2}} \)     (M1)

 

Note: Award (M1) for correct substitution in Pythagoras Formula.

 

\({\text{AC}} = 25{\text{ (cm)}}\)     (A1)     (C2)

(ii)    \(\sqrt {{{12.5}^2} + {{30}^2}} \)     (M1)

 

Note: Award (M1) for correct substitution in Pythagoras Formula.

 

\({\text{VC}} = 32.5{\text{ (cm)}}\)     (A1)(ft)     (C2)

 

Note: Follow through from their AC found in part (a).

a.

\(\sin {\text{VCN}} = \frac{{30}}{{32.5}}\)     OR     \(\tan {\text{VCN}} = \frac{{30}}{{12.5}}\)     OR     \(\cos {\text{VCN}} = \frac{{12.5}}{{32.5}}\)     (M1)
\({ = 67.4^ \circ }\) (\(67.3801 \ldots \))     (A1)(ft)     (C2)

 

Note: Accept alternative methods. Follow through from part (a) and/or part (b).

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 - Geometry and trigonometry » 5.4 » Geometry of three-dimensional solids: cuboid; right prism; right pyramid; right cone; cylinder; sphere; hemisphere; and combinations of these solids.
Show 39 related questions

View options