User interface language: English | Español

Date May 2014 Marks available 2 Reference code 14M.2.sl.TZ2.2
Level SL only Paper 2 Time zone TZ2
Command term Calculate Question number 2 Adapted from N/A

Question

A cross-country running course consists of a beach section and a forest section. Competitors run from AA to BB, then from BB to CC and from CC back to AA.

The running course from AA to BB is along the beach, while the course from BB, through CC and back to AA, is through the forest.

The course is shown on the following diagram.



Angle ABCABC is 110110.

It takes Sarah 55 minutes and 2020 seconds to run from AA to BB at a speed of 3.8 ms13.8 ms1.

Using ‘distance = speed ×× time’, show that the distance from AA to BB is 12201220 metres correct to 3 significant figures.

[2]
a.

The distance from BB to CC is 850850 metres. Running this part of the course takes Sarah 55 minutes and 33 seconds.

Calculate the speed, in ms1ms1, that Sarah runs from BB to CC.

[1]
b.

The distance from BB to CC is 850850 metres. Running this part of the course takes Sarah 55 minutes and 33 seconds.

Calculate the distance, in metres, from CC to AA.

[3]
c.

The distance from BB to CC is 850850 metres. Running this part of the course takes Sarah 55 minutes and 33 seconds.

Calculate the total distance, in metres, of the cross-country running course.

[2]
d.

The distance from BB to CC is 850850 metres. Running this part of the course takes Sarah 55 minutes and 33 seconds.

Find the size of angle BCABCA.

[3]
e.

The distance from BB to CC is 850850 metres. Running this part of the course takes Sarah 55 minutes and 33 seconds.

Calculate the area of the cross-country course bounded by the lines ABAB, BCBC and CACA.

[3]
f.

Markscheme

3.8×3203.8×320     (A1)

 

Note: Award (A1) for 320320 or equivalent seen.

 

=1216=1216     (A1)

=1220 (m)=1220 (m)     (AG)

 

Note: Both unrounded and rounded answer must be seen for the final (A1) to be awarded.

 

[2 marks]

a.

850303 (ms1) (2.81, 2.80528)850303 (ms1) (2.81, 2.80528)     (A1)(G1)

[1 mark]

b.

AC2=12202+85022(1220)(850)cos110AC2=12202+85022(1220)(850)cos110     (M1)(A1)

 

Note: Award (M1) for substitution into cosine rule formula, (A1) for correct substitutions.

 

AC=1710 (m) (1708.87)AC=1710 (m) (1708.87)     (A1)(G2)

 

Notes: Accept 1705 (1705.33)1705 (1705.33).

 

[3 marks]

c.

1220+850+1708.871220+850+1708.87     (M1)

=3780 (m) (3778.87)=3780 (m) (3778.87)     (A1)(ft)(G1)

 

Notes: Award (M1) for adding the three sides. Follow through from their answer to part (c). Accept 3771 (3771.33)3771 (3771.33).

 

[2 marks]

d.

sinC1220=sin1101708.87sinC1220=sin1101708.87     (M1)(A1)(ft)

 

Notes: Award (M1) for substitution into sine rule formula, (A1)(ft) for correct substitutions. Follow through from their part (c).

 

C=42.1 (42.1339)C=42.1 (42.1339)     (A1)(ft)(G2)

 

Notes: Accept 41.9,42.0,42.2,42.341.9,42.0,42.2,42.3.

 

OR

 

cosC=1708.872+8502122022×1708.87×850cosC=1708.872+8502122022×1708.87×850     (M1)(A1)(ft)

 

Notes: Award (M1) for substitution into cosine rule formula, (A1)(ft) for correct substitutions. Follow through from their part (c).

 

C=42.1 (42.1339)C=42.1 (42.1339)     (A1)(ft)(G2)

 

Notes: Accept 41.2,41.8,42.441.2,41.8,42.4.

 

[3 marks]

e.

12×1220×850×sin11012×1220×850×sin110     (M1)(A1)(ft)

OR

12×1708.87×850×sin42.133912×1708.87×850×sin42.1339     (M1)(A1)(ft)

OR

12×1220×1708.87×sin27.866112×1220×1708.87×sin27.8661     (M1)(A1)(ft)

 

Note: Award (M1) for substitution into area formula, (A1)(ft) for correct substitution.

 

=487000 m2 (487230 m2)=487000 m2 (487230 m2)     (A1)(ft)(G2)

 

Notes: The answer is 487000 m2487000 m2, units are required.

     Accept 486000 m2 (485633 m2)486000 m2 (485633 m2).

     If workings are not shown and units omitted, award (G1) for 487000 or 486000487000 or 486000.

     Follow through from parts (c) and (e).

 

[3 marks]

f.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.

Syllabus sections

Topic 1 - Number and algebra » 1.0 » Basic use of the four operations of arithmetic, using integers, decimals and fractions, including order of operations
Show 32 related questions

View options