DP Mathematics SL Questionbank
Definition of derivative from first principles as \(f'\left( x \right) = {\mathop {\lim }\limits_{h \to 0 } } \left( {\frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}} \right)\) .
Path: |
Description
[N/A]Directly related questions
- 17N.1.sl.TZ0.5b: Given that \(\mathop {\lim }\limits_{x \to + \infty } (g \circ f)(x) = - 3\), find the value of...
- 17N.1.sl.TZ0.5a: Find \((g \circ f)(x)\).
- 17M.2.sl.TZ2.8d: Let \(R\) be the region enclosed by the graph of \(f\) , the \(x\)-axis, the line \(x = b\) and...
- 17M.2.sl.TZ2.8c.ii: Find the the rate of change of \(f\) at B.
- 17M.2.sl.TZ2.8c.i: Find the coordinates of B.
- 17M.2.sl.TZ2.8b.ii: Write down the rate of change of \(f\) at A.
- 17M.2.sl.TZ2.8b.i: Write down the coordinates of A.
- 17M.2.sl.TZ2.8a: Find the value of \(p\).
- 16M.2.sl.TZ2.9e: There is a value of \(x\), for \(1 < x < 4\), for which the graphs of \(f\) and \(g\) have...
- 16M.2.sl.TZ2.9d: Given that \(g'(1) = - e\), find the value of \(a\).
- 16M.2.sl.TZ2.9c: Write down the value of \(b\).
- 16M.2.sl.TZ2.9b: Find \(f'(x)\).
- 16M.2.sl.TZ2.9a: Write down the equation of the horizontal asymptote of the graph of \(f\).
- 16N.2.sl.TZ0.10c: (i) Find \(w\). (ii) Hence or otherwise, find the maximum positive rate of change of \(g\).
- 16N.2.sl.TZ0.10b: (i) Write down the value of \(k\). (ii) Find \(g(x)\).
- 16N.2.sl.TZ0.10a: (i) Find the value of \(c\). (ii) Show that \(b = \frac{\pi }{6}\). (iii) Find the...
- 09M.2.sl.TZ1.10b: Use the formula \(f'(x) = \mathop {\lim }\limits_{h \to 0} \frac{{f(x + h) - f(x)}}{h}\) to show...