User interface language: English | Español

Date May Example question Marks available 3 Reference code EXM.2.AHL.TZ0.1
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number 1 Adapted from N/A

Question

Consider the system of paired differential equations

x ˙ = 3 x + 2 y

y ˙ = 2 x + 3 y .

This represents the populations of two species of symbiotic toadstools in a large wood.

Time t is measured in decades.

Use the eigenvalue method to find the general solution to this system of equations.

[10]
a.

Given the initial conditions that when  t = 0 x = 150 y = 50 , find the particular solution.

[3]
b.i.

Hence find the solution when t = 1 .

[1]
b.ii.

As  t , find an asymptote to the trajectory of the particular solution found in (b)(i) and state if this trajectory will be moving towards or away from the origin.

[4]
c.

Markscheme

The characteristic equation is given by

| 3 λ 2 2 3 λ | = 0 λ 2 6 λ + 5 = 0 λ = 1  or 5      M1A1A1A1

λ = 1   ( 2 2 2 2 ) ( p q ) = ( 0 0 )  gives an eigenvector of form  ( 1 1 )      M1A1

λ = 5   ( 2 2 2 2 ) ( p q ) = ( 0 0 )  gives an eigenvector of form  ( 1 1 )      M1A1

General solution is  ( x y ) = A e t ( 1 1 ) + B e 5 t ( 1 1 )       A1A1

[10 marks]

a.

Require A + B = 150 ,   A + B = 50 A = 50 ,  B = 100        M1A1

Particular solution is  ( x y ) = 50 e t ( 1 1 ) + 100 e 5 t ( 1 1 )        A1

[3 marks]

b.i.

t = 1 ( x y ) = ( 15000 14700 )   ( 3 s f )       A1

[1 mark]

b.ii.

The dominant term is  100 e 5 t ( 1 1 )      so as  t ( x y ) 100 e 5 t ( 1 1 )      M1A1

Giving the asymptote as  y = x      A1

The trajectory is moving away from the origin.       A1

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.

Syllabus sections

Topic 5—Calculus » AHL 5.17—Phase portrait
Show 63 related questions
Topic 5—Calculus

View options