User interface language: English | Español

Date May 2022 Marks available 2 Reference code 22M.1.AHL.TZ2.3
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 2
Command term Solve Question number 3 Adapted from N/A

Question

A function f is defined by fx=2x-1x+1, where x, x-1.

The graph of y=f(x) has a vertical asymptote and a horizontal asymptote.

Write down the equation of the vertical asymptote.

[1]
a.i.

Write down the equation of the horizontal asymptote.

[1]
a.ii.

On the set of axes below, sketch the graph of y=f(x).

On your sketch, clearly indicate the asymptotes and the position of any points of intersection with the axes.

[3]
b.

Hence, solve the inequality 0<2x-1x+1<2.

[1]
c.

Solve the inequality 0<2x-1x+1<2.

[2]
d.

Markscheme

x=-1          A1

 

[1 mark]

a.i.

y=2          A1

 

[1 mark]

a.ii.

rational function shape with two branches in opposite quadrants, with two correctly positioned asymptotes and asymptotic behaviour shown         A1

axes intercepts clearly shown at x=12 and y=-1         A1A1

 

[3 marks]

b.

x>12         A1


Note:
Accept correct alternative correct notation, such as 12,  and ]12,[.

 

[1 mark]

c.

EITHER

attempts to sketch y=2x-1x+1        (M1)


OR

attempts to solve 2x-1=0        (M1)

 

Note: Award the (M1) if x=12 and x=-12 are identified.

 

THEN

x<-12 or x>12         A1

 

Note: Accept the use of a comma. Condone the use of ‘and’. Accept correct alternative notation.

  

[2 marks]

d.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 2—Functions » AHL 2.16—Graphing modulus equations and inequalities
Topic 2—Functions

View options