User interface language: English | Español

Date May 2021 Marks available 2 Reference code 21M.2.SL.TZ1.7
Level Standard Level Paper Paper 2 Time zone Time zone 1
Command term Determine Question number 7 Adapted from N/A

Question

Two friends Amelia and Bill, each set themselves a target of saving $20000. They each have $9000 to invest.

Amelia invests her $9000 in an account that offers an interest rate of 7% per annum compounded annually.

A third friend Chris also wants to reach the $20000 target. He puts his money in a safe where he does not earn any interest. His system is to add more money to this safe each year. Each year he will add half the amount added in the previous year.

Find the value of Amelia’s investment after 5 years to the nearest hundred dollars.

[3]
a.i.

Determine the number of years required for Amelia’s investment to reach the target.

[2]
a.ii.

Bill invests his $9000 in an account that offers an interest rate of r% per annum compounded monthly, where r is set to two decimal places.

Find the minimum value of r needed for Bill to reach the target after 10 years.

[3]
b.

Show that Chris will never reach the target if his initial deposit is $9000.

[5]
c.i.

Find the amount Chris needs to deposit initially in order to reach the target after 5 years. Give your answer to the nearest dollar.

[3]
c.ii.

Markscheme

EITHER

9000×1+71005           (A1)

12622.965           (A1)

 

OR

n=5
I%=7
PV=9000
P/Y=1
C/Y=1           (A1)
±12622.965           (A1)

 

THEN

($)12600           A1

 

[3 marks]

a.i.

EITHER

90001+7100x=20000           (A1)

 

OR

I%=7
PV=9000
FV=±20000
P/Y=1
C/Y=1           (A1)

 

THEN

=12 (years)           A1

 

[2 marks]

a.ii.

METHOD 1

attempt to substitute into compound interest formula (condone absence of compounding periods)           (M1)

90001+r100×1212×10=20000

8.01170           (A1)

r=8.02%           A1

 

METHOD 2

n=10
PV=±9000
FV=20000
P/Y=1
C/Y=12
r=8.01170           (M1)(A1)

 

Note: Award M1 for an attempt to use a financial app in their technology, award A1 for ( r=) 8.01170

 

r=8.02%           A1

 

[3 marks]

b.

recognising geometric series (seen anywhere)           (M1)

r=45009000 =12           (A1)

 

EITHER

considering S           (M1)

90001-0.5=18000           A1

correct reasoning that 18000<20000           R1

 

Note: Accept S<20000 only if S has been calculated.

 

OR

considering Sn for a large value of n, n80           (M1)

 

Note: Award M1 only if the candidate gives a valid reason for choosing a value of n, where 50n<80.

 

correct value of Sn for their n           A1

valid reason why Chris will not reach the target, which involves their choice of n, their value of Sn and Chris’ age OR using two large values of n to recognize asymptotic behaviour of Sn as n.           R1

 

Note: Do not award the R mark without the preceding A mark.

 

THEN

Therefore, Chris will never reach the target.           AG

 

[5 marks]

c.i.

recognising geometric sum           M1

u11-0.550.5=20000           (A1)

10322.58

($)10323           A1

 

[3 marks]

c.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.

Syllabus sections

Topic 1—Number and algebra » SL 1.4—Financial apps – compound int, annual depreciation
Show 31 related questions
Topic 1—Number and algebra

View options