Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date May 2019 Marks available 4 Reference code 19M.1.SL.TZ1.S_10
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 1
Command term Find Question number S_10 Adapted from N/A

Question

Consider f(x)=xsin(π4x) and g(x)=x for x ≥ 0. The first time the graphs of f and g intersect is at x=0.

The set of all non-zero values that satisfy f(x)=g(x) can be described as an arithmetic sequence, un=a+bn where n ≥ 1.

Find the two smallest non-zero values of x for which f(x)=g(x).

[5]
a.

At point P, the graphs of f and g intersect for the 21st time. Find the coordinates of P.

[4]
c.

The following diagram shows part of the graph of g reflected in the x-axis. It also shows part of the graph of f and the point P.

Find an expression for the area of the shaded region. Do not calculate the value of the expression.

[4]
d.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

correct working        (A1)

eg   sin(π4x)=1,  x(1sin(π4x))=0

sin(π2)=1  (seen anywhere)        (A1)

correct working (ignore additional values)        (A1)

eg   π4x=π2,  π4x=π2+2π

x = 2, 10       A1A1    N1N1

[5 marks]

a.

valid approach        (M1)

eg     first intersection at x=0n=20

correct working        A1

eg   6+8×20,  2+(201)×8, u20=154

P(154, 154)   (accept x=154 and y=154)      A1A1    N3

[4 marks]

c.

valid attempt to find upper boundary         (M1)

eg    half way between u20 and u21, u20+d2, 154 + 4, 2+8n, at least two values of new sequence {6, 14, ...}

upper boundary at x=158 (seen anywhere)        (A1)

correct integral expression (accept missing dx)    A1A1    N4

eg    1580(xsin(π4x)+x)dx1580(g+f)dx),  1580xsin(π4x)dx1580xdx

Note: Award A1 for two correct limits and A1 for correct integrand. The A1 for correct integrand may be awarded independently of all the other marks.

[4 marks]

d.

Examiners report

[N/A]
a.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 1—Number and algebra » SL 1.2—Arithmetic sequences and series
Show 82 related questions
Topic 1—Number and algebra

View options