Processing math: 100%

User interface language: English | Español

Date November 2015 Marks available 8 Reference code 15N.3dm.hl.TZ0.3
Level HL only Paper Paper 3 Discrete mathematics Time zone TZ0
Command term Show that Question number 3 Adapted from N/A

Question

Show that there are exactly two solutions to the equation 1982=36a+74b, with a, bN.

[8]
a.

Hence, or otherwise, find the remainder when 19821982 is divided by 37.

[5]
b.

Markscheme

74=2×36+2 OR gcd(36, 74)=2     (A1)

2=(2)(36)+(1)(74)     M1

1982=(1982)(36)+(991)(74)     A1

so solutions are a=1982+37t and b=99118t     M1A1

a, bN so 198237t99118(15.56t55.055)     (M1)(A1)

t can take values 54 or 55 only     A1AG

(Or the solutions are (16, 19) or (53, 1))

 

Note:     Accept arguments from one solution of increasing/decreasing a by 37 and increasing/decreasing b by 18 to give the only possible positive solutions.

[8 marks]

a.

1982=53×36+74

1982=55×36+2     (M1)

1982361(mod37) (by FLT)     (M1)

19821982=198236×55+219822(mod37)     (A1)

34(mod37)     A1

so the remainder is 34     A1

 

Note:     1982 in the base can be replaced by 21.

 

Note:     Award the first (M1) if the 1982 in the experiment is correctly broken down to a smaller number.

 

[5 marks]

Total [13 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 10 - Option: Discrete mathematics » 10.3 » Linear Diophantine equations ax+by=c .

View options