User interface language: English | Español

Date November 2015 Marks available 6 Reference code 15N.3dm.hl.TZ0.2
Level HL only Paper Paper 3 Discrete mathematics Time zone TZ0
Command term Find Question number 2 Adapted from N/A

Question

A recurrence relation is given by un+1+2un+1=0, u1=4un+1+2un+1=0, u1=4.

Use the recurrence relation to find u2u2.

[1]
a.

Find an expression for unun in terms of nn.

[6]
b.

A second recurrence relation, where v1=u1v1=u1 and v2=u2v2=u2, is given by vn+1+2vn+vn1=0, n2vn+1+2vn+vn1=0, n2.

Find an expression for vnvn in terms of nn.

[6]
c.

Markscheme

u2=9u2=9     A1

[1 mark]

a.

METHOD 1

un+1=2un1un+1=2un1

let un=a(2)n+bun=a(2)n+b     M1A1

EITHER

a(2)n+1+b=2(a(2)n+b)1a(2)n+1+b=2(a(2)n+b)1     M1

a(2)n+1+b=a(2)n+12b1a(2)n+1+b=a(2)n+12b1

3b=13b=1

b=13b=13     A1

u1=42a13=4u1=42a13=4     (M1)

a=136a=136     A1

OR

using u1=4, u2=9u1=4, u2=9

4=2a+b, 9=4a+b4=2a+b, 9=4a+b     M1A1

solving simultaneously     M1

a=136, and b=13a=136, and b=13     A1

THEN

so un=136(2)n13un=136(2)n13

METHOD 2

use of the formula un=anu0+b(1an1a)un=anu0+b(1an1a)     (M1)

letting u0=52u0=52     A1

letting a=2a=2 and b=1b=1     A1

un=52(2)n1(1(2)n12)un=52(2)n1(1(2)n12)     M1A1

=136(2)n13=136(2)n13     A1

[6 marks]

b.

auxiliary equation is k2+2k+1=0k2+2k+1=0     M1

hence k=1k=1     (A1)

so let vn=(an+b)(1)nvn=(an+b)(1)n     M1

(2a+b)(1)2=9(2a+b)(1)2=9 and (a+b)(1)1=4(a+b)(1)1=4     A1

so a=5, b=1a=5, b=1     M1A1

vn=(15n)(1)nvn=(15n)(1)n

 

Note:     Caution necessary to allow FT from (a) to part (c).

[6 marks]

Total [13 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 10 - Option: Discrete mathematics » 10.11 » Solution of first- and second-degree linear homogeneous recurrence relations with constant coefficients.

View options