Processing math: 100%

User interface language: English | Español

Date November 2015 Marks available 4 Reference code 15N.3srg.hl.TZ0.4
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Find Question number 4 Adapted from N/A

Question

The binary operation is defined on the set T={0, 2, 3, 4, 5, 6} by ab=(a+bab)(mod7), a, bT.

Copy and complete the following Cayley table for {T, }.

[4]
a.

Prove that {T, } forms an Abelian group.

[7]
b.

Find the order of each element in T.

[4]
c.

Given that {H, } is the subgroup of {T, } of order 2, partition T into the left cosets with respect to H.

[3]
d.

Markscheme

Cayley table is

     A4

award A4 for all 16 correct, A3 for up to 2 errors, A2 for up to 4 errors, A1 for up to 6 errors

[4 marks]

a.

closed as no other element appears in the Cayley table     A1

symmetrical about the leading diagonal so commutative     R1

hence it is Abelian

0 is the identity

as x0(=0x)=x+00=x     A1

0 and 2 are self inverse, 3 and 5 is an inverse pair, 4 and 6 is an inverse pair     A1

 

Note:     Accept “Every row and every column has a 0 so each element has an inverse”.

 

(ab)c=(a+bab)c=a+bab+c(a+bab)c     M1

=a+b+cabacbc+abc     A1

a(bc)=a(b+cbc)=a+b+cbca(b+cbc)     A1

=a+b+cabacbc+abc

so (ab)c=a(bc) and is associative

 

Note:     Inclusion of mod 7 may be included at any stage.

[7 marks]

 

b.

0 has order 1 and 2 has order 2    A1

32=4, 33=2, 34=6, 35=5, 36=0 so 3 has order 6     A1

42=6, 43=0 so 4 has order 3     A1

5 has order 6 and 6 has order 3     A1

[4 marks]

c.

H={0, 2}     A1

0{0, 2}={0, 2}, 2{0, 2}={2, 0}, 3{0, 2}={3, 6}, 4{0, 2}={4, 5},

5{0, 2}={5, 4}, 6{0, 2}={6, 3}     M1

 

Note:     Award the M1 if sufficient examples are used to find at least two of the cosets.

 

so the left cosets are {0, 2}, {3, 6}, {4, 5}     A1

[3 marks]

Total [18 marks]

d.

Examiners report

 

 

 

a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.9 » The order of a group element.

View options