User interface language: English | Español

Date November 2015 Marks available 3 Reference code 15N.3srg.hl.TZ0.3
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Find and Give an example of Question number 3 Adapted from N/A

Question

The set of all permutations of the elements \(1,{\text{ }}2,{\text{ }} \ldots 10\) is denoted by \(H\) and the binary operation \( \circ \) represents the composition of permutations.

The permutation \(p = (1{\text{ }}2{\text{ }}3{\text{ }}4{\text{ }}5{\text{ }}6)(7{\text{ }}8{\text{ }}9{\text{ }}10)\) generates the subgroup \(\{ G,{\text{ }} \circ \} \) of the group \(\{ H,{\text{ }} \circ \} \).

Find the order of \(\{ G,{\text{ }} \circ \} \).

[2]
a.

State the identity element in \(\{ G,{\text{ }} \circ \} \).

[1]
b.

Find

(i)     \(p \circ p\);

(ii)     the inverse of \(p \circ p\).

[4]
c.

(i)     Find the maximum possible order of an element in \(\{ H,{\text{ }} \circ \} \).

(ii)     Give an example of an element with this order.

[3]
d.

Markscheme

the order of \((G,{\text{ }} \circ )\) is \({\text{lcm}}(6,{\text{ }}4)\)     (M1)

\( = 12\)     A1

[2 marks]

a.

\(\left( 1 \right){\rm{ }}\left( 2 \right){\rm{ }}\left( 3 \right){\rm{ }}\left( 4 \right){\rm{ }}\left( 5 \right){\rm{ }}\left( 6 \right){\rm{ }}\left( 7 \right){\rm{ }}\left( 8 \right){\rm{ }}\left( 9 \right){\rm{ }}\left( {10} \right)\)     A1

 

Note:     Accept ( ) or a word description.

[1 mark]

b.

(i)     \(p \circ p = (1{\text{ }}3{\text{ }}5)(2{\text{ }}4{\text{ }}6)(7{\text{ }}9)(810)\)     (M1)A1

(ii)     its inverse \( = (1{\text{ }}5{\text{ }}3)(2{\text{ }}6{\text{ }}4)(7{\text{ }}9)(810)\)     A1A1

 

Note:     Award A1 for cycles of 2, A1 for cycles of 3.

[4 marks]

c.

(i)     considering LCM of length of cycles with length \(2\), \(3\) and \(5\)     (M1)

\(30\)     A1

(ii)     eg\(\;\;\;(1{\text{ }}2)(3{\text{ }}4{\text{ }}5)(6{\text{ }}7{\text{ }}8{\text{ }}9{\text{ }}10)\)     A1

 

Note:     allow FT as long as the length of cycles adds to \(10\) and their LCM is consistent with answer to part (i).

 

Note: Accept alternative notation for each part

[3 marks]

Total [10 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.9 » The order of a group element.

View options