User interface language: English | Español

Date November 2010 Marks available 7 Reference code 10N.2.hl.TZ0.6
Level HL only Paper 2 Time zone TZ0
Command term Find Question number 6 Adapted from N/A

Question

Consider the polynomial \(p(x) = {x^4} + a{x^3} + b{x^2} + cx + d\), where a, b, c, d \( \in \mathbb{R}\).

Given that 1 + i and 1 − 2i are zeros of \(p(x)\), find the values of a, b, c and d.

Markscheme

METHOD 1

1 + i is a zero \( \Rightarrow \) 1 – i is a zero     (A1)

1 – 2i is a zero \( \Rightarrow \) 1 + 2i is a zero     (A1)

\(\left( {x - (1 - {\text{i}})} \right)\left( {x - (1 + {\text{i}})} \right) = ({x^2} - 2x + 2)\)     (M1)A1

\(\left( {x - (1 - 2{\text{i}})} \right)\left( {x - (1 + 2{\text{i}})} \right) = ({x^2} - 2x + 5)\)     A1

\(p(x) = ({x^2} - 2x + 2)({x^2} - 2x + 5)\)     M1

\( = {x^4} - 4{x^3} + 11{x^2} - 14x + 10\)     A1

\(a = - 4,{\text{ }}b = 11,{\text{ }}c = - 14,{\text{ }}d = 10\)

[7 marks]

METHOD 2

\(p(1 + {\text{i}}) = - 4 + ( - 2 + 2{\text{i}})a + (2{\text{i}})b + (1 + {\text{i}})c + d\)     M1

\(p(1 + {\text{i}}) = 0 \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  { - 4 - 2a + c + d = 0} \\
  {2a + 2b + c = 0}
\end{array}} \right.\)     M1A1A1

\(p(1 - 2{\text{i}}) = - 7 + 24{\text{i}} + ( - 11 + 2{\text{i}})a + ( - 3 - 4{\text{i}})b + (1 - 2{\text{i}})c + d\)

\(p(1 - 2{\text{i}}) = 0 \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  { - 7 - 11a - 3b + c + d = 0} \\
  {24 + 2a - 4b - 2c = 0}
\end{array}} \right.\)     A1

\(\left( {\begin{array}{*{20}{c}}
  a \\
  b \\
  c \\
  d
\end{array}} \right) = {\left( {\begin{array}{*{20}{c}}
  { - 2}&0&1&1 \\
  2&2&1&0 \\
  { - 11}&{ - 3}&1&1 \\
  2&{ - 4}&{ - 2}&0
\end{array}} \right)^{ - 1}}\left( {\begin{array}{*{20}{c}}
  4 \\
  0 \\
  7 \\
  { - 24}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
  { - 4} \\
  {11} \\
  { - 14} \\
  {10}
\end{array}} \right)\)     M1A1

\(a = - 4,{\text{ }}b = 11,{\text{ }}c = - 14,{\text{ }}d = 10\)

[7 marks]

Examiners report

Most candidates attempted this question, using different approaches. The most successful approach was the method of complex conjugates and the product of linear factors. Candidates who used this method were in general successful whereas candidates who attempted direct substitution and separation of real and imaginary parts to obtain four equations in four unknowns were less successful because either they left the work incomplete or made algebraic errors that led to incorrect answers.

Syllabus sections

Topic 1 - Core: Algebra » 1.8 » Conjugate roots of polynomial equations with real coefficients.

View options