User interface language: English | Español

Date None Specimen Marks available 7 Reference code SPNone.2.hl.TZ0.8
Level HL only Paper 2 Time zone TZ0
Command term Find Question number 8 Adapted from N/A

Question

OABCDE is a regular hexagon and a , b denote respectively the position vectors of A, B with respect to O.

Show that OC = 2AB .

[2]
a.

Find the position vectors of C, D and E in terms of a and b .

[7]
b.

Markscheme

\({\text{OC}} = {\text{AB}} + {\text{OA}}\cos 60 + {\text{BC}}\cos 60\)     M1

\( = {\text{AB}} + {\text{AB}} \times \frac{1}{2} + {\text{AB}} \times \frac{1}{2}\)     A1

\( = 2{\text{AB}}\)     AG

[2 marks]

a.

\(\overrightarrow {{\text{OC}}} = 2\overrightarrow {{\text{AB}}} = \)2(ba)     M1A1

\(\overrightarrow {{\text{OD}}} = \overrightarrow {{\text{OC}}} + \overrightarrow {{\text{CD}}} \)     M1

\( = \overrightarrow {{\text{OC}}} + \overrightarrow {{\text{AO}}} \)     A1

= 2b – 2aa = 2b – 3a     A1

\(\overrightarrow {{\text{OE}}} = \overrightarrow {{\text{BC}}} \)     M1

= 2b – 2ab = b – 2a     A1

[7 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 4 - Core: Vectors » 4.1 » Concept of a vector.

View options