Date | November 2012 | Marks available | 4 | Reference code | 12N.3srg.hl.TZ0.4 |
Level | HL only | Paper | Paper 3 Sets, relations and groups | Time zone | TZ0 |
Command term | Show that | Question number | 4 | Adapted from | N/A |
Question
Let c be a positive, real constant. Let G be the set \(\{ \left. {x \in \mathbb{R}} \right| - c < x < c\} \) . The binary operation \( * \) is defined on the set G by \(x * y = \frac{{x + y}}{{1 + \frac{{xy}}{{{c^2}}}}}\).
Simplify \(\frac{c}{2} * \frac{{3c}}{4}\) .
State the identity element for G under \( * \).
For \(x \in G\) find an expression for \({x^{ - 1}}\) (the inverse of x under \( * \)).
Show that the binary operation \( * \) is commutative on G .
Show that the binary operation \( * \) is associative on G .
(i) If \(x,{\text{ }}y \in G\) explain why \((c - x)(c - y) > 0\) .
(ii) Hence show that \(x + y < c + \frac{{xy}}{c}\) .
Show that G is closed under \( * \).
Explain why \(\{ G, * \} \) is an Abelian group.
Markscheme
\(\frac{c}{2} * \frac{{3c}}{4} = \frac{{\frac{c}{2} + \frac{{3c}}{4}}}{{1 + \frac{1}{2} \cdot \frac{3}{4}}}\) M1
\( = \frac{{\frac{{5c}}{4}}}{{\frac{{11}}{8}}} = \frac{{10c}}{{11}}\) A1
[2 marks]
identity is 0 A1
[1 mark]
inverse is –x A1
[1 mark]
\(x * y = \frac{{x + y}}{{1 + \frac{{xy}}{{{c^2}}}}},{\text{ }}y * x = \frac{{y + x}}{{1 + \frac{{yx}}{{{c^2}}}}}\) M1
(since ordinary addition and multiplication are commutative)
\(x * y = y * x{\text{ so }} * \) is commutative R1
Note: Accept arguments using symmetry.
[2 marks]
\((x * y) * z = \frac{{x + y}}{{1 + \frac{{xy}}{{{c^2}}}}} * z = \frac{{\left( {\frac{{x + y}}{{1 + \frac{{xy}}{{{c^2}}}}}} \right) + z}}{{1 + \left( {\frac{{x + y}}{{1 + \frac{{xy}}{{{c^2}}}}}} \right)\frac{z}{{{c^2}}}}}\) M1
\( = \frac{{\frac{{\left( {x + y + z + \frac{{xyz}}{{{c^2}}}} \right)}}{{\left( {1 + \frac{{xy}}{{{c^2}}}} \right)}}}}{{\frac{{\left( {1 + \frac{{xy}}{{{c^2}}} + \frac{{xz}}{{{c^2}}} + \frac{{yz}}{{{c^2}}}} \right)}}{{\left( {1 + \frac{{xy}}{{{c^2}}}} \right)}}}} = \frac{{\left( {x + y + z + \frac{{xyz}}{{{c^2}}}} \right)}}{{\left( {1 + \left( {\frac{{xy + xz + yz}}{{{c^2}}}} \right)} \right)}}\) A1
\(x * (y * z) = x * \left( {\frac{{y + z}}{{1 + \frac{{yz}}{{{c^2}}}}}} \right) = \frac{{x + \left( {\frac{{y + z}}{{1 + \frac{{yz}}{{{c^2}}}}}} \right)}}{{1 + \frac{x}{{{c^2}}}\left( {\frac{{y + z}}{{1 + \frac{{yz}}{{{c^2}}}}}} \right)}}\)
\( = \frac{{\frac{{\left( {x + \frac{{xyz}}{{{c^2}}} + y + z} \right)}}{{\left( {1 + \frac{{yz}}{{{c^2}}}} \right)}}}}{{\frac{{\left( {1 + \frac{{yz}}{{{c^2}}} + \frac{{xy}}{{{c^2}}} + \frac{{xz}}{{{c^2}}}} \right)}}{{\left( {1 + \frac{{yz}}{{{c^2}}}} \right)}}}} = \frac{{\left( {x + y + z + \frac{{xyz}}{{{c^2}}}} \right)}}{{\left( {1 + \left( {\frac{{xy + xz + yz}}{{{c^2}}}} \right)} \right)}}\) A1
since both expressions are the same \( * \) is associative R1
Note: After the initial M1A1, correct arguments using symmetry also gain full marks.
[4 marks]
(i) \(c > x{\text{ and }}c > y \Rightarrow c - x > 0{\text{ and }}c - y > 0 \Rightarrow (c - x)(c - y) > 0\) R1AG
(ii) \({c^2} - cx - cy + xy > 0 \Rightarrow {c^2} + xy > cx + cy \Rightarrow c + \frac{{xy}}{c} > x + y{\text{ (as }}c > 0)\)
so \(x + y < c + \frac{{xy}}{c}\) M1AG
[2 marks]
if \(x,{\text{ }}y \in G{\text{ then }} - c - \frac{{xy}}{c} < x + y < c + \frac{{xy}}{c}\)
thus \( - c\left( {1 + \frac{{xy}}{{{c^2}}}} \right) < x + y < c\left( {1 + \frac{{xy}}{{{c^2}}}} \right){\text{ and }} - c < \frac{{x + y}}{{1 + \frac{{xy}}{{{c^2}}}}} < c\) M1
\(({\text{as }}1 + \frac{{xy}}{{{c^2}}} > 0){\text{ so }} - c < x * y < c\) A1
proving that G is closed under \( * \) AG
[2 marks]
as \(\{ G, * \} \) is closed, is associative, has an identity and all elements have an inverse R1
it is a group AG
as \( * \) is commutative R1
it is an Abelian group AG
[2 marks]
Examiners report
Most candidates were able to answer part (a) indicating preparation in such questions. Many students failed to identify the command term “state” in parts (b) and (c) and spent a lot of time – usually unsuccessfully - with algebraic methods. Most students were able to offer satisfactory solutions to part (d) and although most showed that they knew what to do in part (e), few were able to complete the proof of associativity. Surprisingly few managed to answer parts (f) and (g) although many who continued to this stage, were able to pick up at least one of the marks for part (h), regardless of what they had done before. Many candidates interpreted the question as asking to prove that the group was Abelian, rather than proving that it was an Abelian group. Few were able to fully appreciate the significance in part (i) although there were a number of reasonable solutions.
Most candidates were able to answer part (a) indicating preparation in such questions. Many students failed to identify the command term “state” in parts (b) and (c) and spent a lot of time – usually unsuccessfully - with algebraic methods. Most students were able to offer satisfactory solutions to part (d) and although most showed that they knew what to do in part (e), few were able to complete the proof of associativity. Surprisingly few managed to answer parts (f) and (g) although many who continued to this stage, were able to pick up at least one of the marks for part (h), regardless of what they had done before. Many candidates interpreted the question as asking to prove that the group was Abelian, rather than proving that it was an Abelian group. Few were able to fully appreciate the significance in part (i) although there were a number of reasonable solutions.
Most candidates were able to answer part (a) indicating preparation in such questions. Many students failed to identify the command term “state” in parts (b) and (c) and spent a lot of time – usually unsuccessfully - with algebraic methods. Most students were able to offer satisfactory solutions to part (d) and although most showed that they knew what to do in part (e), few were able to complete the proof of associativity. Surprisingly few managed to answer parts (f) and (g) although many who continued to this stage, were able to pick up at least one of the marks for part (h), regardless of what they had done before. Many candidates interpreted the question as asking to prove that the group was Abelian, rather than proving that it was an Abelian group. Few were able to fully appreciate the significance in part (i) although there were a number of reasonable solutions.
Most candidates were able to answer part (a) indicating preparation in such questions. Many students failed to identify the command term “state” in parts (b) and (c) and spent a lot of time – usually unsuccessfully - with algebraic methods. Most students were able to offer satisfactory solutions to part (d) and although most showed that they knew what to do in part (e), few were able to complete the proof of associativity. Surprisingly few managed to answer parts (f) and (g) although many who continued to this stage, were able to pick up at least one of the marks for part (h), regardless of what they had done before. Many candidates interpreted the question as asking to prove that the group was Abelian, rather than proving that it was an Abelian group. Few were able to fully appreciate the significance in part (i) although there were a number of reasonable solutions.
Most candidates were able to answer part (a) indicating preparation in such questions. Many students failed to identify the command term “state” in parts (b) and (c) and spent a lot of time – usually unsuccessfully - with algebraic methods. Most students were able to offer satisfactory solutions to part (d) and although most showed that they knew what to do in part (e), few were able to complete the proof of associativity. Surprisingly few managed to answer parts (f) and (g) although many who continued to this stage, were able to pick up at least one of the marks for part (h), regardless of what they had done before. Many candidates interpreted the question as asking to prove that the group was Abelian, rather than proving that it was an Abelian group. Few were able to fully appreciate the significance in part (i) although there were a number of reasonable solutions.
Most candidates were able to answer part (a) indicating preparation in such questions. Many students failed to identify the command term “state” in parts (b) and (c) and spent a lot of time – usually unsuccessfully - with algebraic methods. Most students were able to offer satisfactory solutions to part (d) and although most showed that they knew what to do in part (e), few were able to complete the proof of associativity. Surprisingly few managed to answer parts (f) and (g) although many who continued to this stage, were able to pick up at least one of the marks for part (h), regardless of what they had done before. Many candidates interpreted the question as asking to prove that the group was Abelian, rather than proving that it was an Abelian group. Few were able to fully appreciate the significance in part (i) although there were a number of reasonable solutions.
Most candidates were able to answer part (a) indicating preparation in such questions. Many students failed to identify the command term “state” in parts (b) and (c) and spent a lot of time – usually unsuccessfully - with algebraic methods. Most students were able to offer satisfactory solutions to part (d) and although most showed that they knew what to do in part (e), few were able to complete the proof of associativity. Surprisingly few managed to answer parts (f) and (g) although many who continued to this stage, were able to pick up at least one of the marks for part (h), regardless of what they had done before. Many candidates interpreted the question as asking to prove that the group was Abelian, rather than proving that it was an Abelian group. Few were able to fully appreciate the significance in part (i) although there were a number of reasonable solutions.
Most candidates were able to answer part (a) indicating preparation in such questions. Many students failed to identify the command term “state” in parts (b) and (c) and spent a lot of time – usually unsuccessfully - with algebraic methods. Most students were able to offer satisfactory solutions to part (d) and although most showed that they knew what to do in part (e), few were able to complete the proof of associativity. Surprisingly few managed to answer parts (f) and (g) although many who continued to this stage, were able to pick up at least one of the marks for part (h), regardless of what they had done before. Many candidates interpreted the question as asking to prove that the group was Abelian, rather than proving that it was an Abelian group. Few were able to fully appreciate the significance in part (i) although there were a number of reasonable solutions.