Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 6 Reference code 18M.3srg.hl.TZ0.5
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Prove that Question number 5 Adapted from N/A

Question

The function fZZ is defined by f(n)=n+(1)n.

Prove that ff is the identity function.

[6]
a.

Show that f is injective.

[2]
b.i.

Show that f is surjective.

[1]
b.ii.

Markscheme

METHOD 1

(ff)(n)=n+(1)n+(1)n+(1)n     M1A1

=n+(1)n+(1)n×(1)(1)n     (A1)

considering (1)n for even and odd n     M1

if n is odd, (1)n=1 and if n is even, (1)n=1 and so (1)±1=1      A1

=n+(1)n(1)n    A1

= n and so ff is the identity function     AG

 

METHOD 2

(ff)(n)=n+(1)n+(1)n+(1)n      M1A1

=n+(1)n+(1)n×(1)(1)n     (A1)

=n+(1)n×(1+(1)(1)n)     M1

(1)±1=1     R1

1+(1)(1)n=0     A1

(ff)(n)=n and so ff is the identity function     AG

 

METHOD 3

(ff)(n)=f(n+(1)n)      M1

considering even and odd n       M1

if n is even, f(n)=n+1 which is odd    A1

so (ff)(n)=f(n+1)=(n+1)1=n    A1

if n is odd, f(n)=n1 which is even    A1

so (ff)(n)=f(n1)=(n1)+1=n     A1

(ff)(n)=n in both cases

hence ff is the identity function     AG

[6 marks]

a.

suppose f(n)=f(m)     M1

applying f to both sides n=m     R1

hence f is injective     AG

[2 marks]

b.i.

m=f(n) has solution n=f(m)       R1

hence surjective       AG

[1 mark]

b.ii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.6 » The identity element e.

View options