User interface language: English | Español

Date May 2018 Marks available 6 Reference code 18M.3srg.hl.TZ0.5
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Prove that Question number 5 Adapted from N/A

Question

The function \(f\,{\text{: }}\mathbb{Z} \to \mathbb{Z}\) is defined by \(f\left( n \right) = n + {\left( { - 1} \right)^n}\).

Prove that \(f \circ f\) is the identity function.

[6]
a.

Show that \(f\) is injective.

[2]
b.i.

Show that \(f\) is surjective.

[1]
b.ii.

Markscheme

METHOD 1

\(\left( {f \circ f} \right)\left( n \right) = n + {\left( { - 1} \right)^n} + {\left( { - 1} \right)^{n + {{\left( { - 1} \right)}^n}}}\)     M1A1

\( = n + {\left( { - 1} \right)^n} + {\left( { - 1} \right)^n} \times {\left( { - 1} \right)^{{{\left( { - 1} \right)}^n}}}\)     (A1)

considering \({\left( { - 1} \right)^n}\) for even and odd \(n\)     M1

if \(n\) is odd, \({\left( { - 1} \right)^n} = - 1\) and if \(n\) is even, \({\left( { - 1} \right)^n} = 1\) and so \({\left( { - 1} \right)^{ \pm 1}} =  - 1\)      A1

\( = n + {\left( { - 1} \right)^n} - {\left( { - 1} \right)^n}\)    A1

= \(n\) and so \(f \circ f\) is the identity function     AG

 

METHOD 2

\(\left( {f \circ f} \right)\left( n \right) = n + {\left( { - 1} \right)^n} + {\left( { - 1} \right)^{n + {{\left( { - 1} \right)}^n}}}\)      M1A1

\( = n + {\left( { - 1} \right)^n} + {\left( { - 1} \right)^n} \times {\left( { - 1} \right)^{{{\left( { - 1} \right)}^n}}}\)     (A1)

\( = n + {\left( { - 1} \right)^n} \times \left( {1 + {{\left( { - 1} \right)}^{{{\left( { - 1} \right)}^n}}}} \right)\)     M1

\({\left( { - 1} \right)^{ \pm 1}} =  - 1\)     R1

\(1 + {\left( { - 1} \right)^{{{\left( { - 1} \right)}^n}}} = 0\)     A1

\(\left( {f \circ f} \right)\left( n \right) = n\) and so \(f \circ f\) is the identity function     AG

 

METHOD 3

\(\left( {f \circ f} \right)\left( n \right) = f\left( {n + {{\left( { - 1} \right)}^n}} \right)\)      M1

considering even and odd \(n\)       M1

if \(n\) is even, \(f\left( n \right) = n + 1\) which is odd    A1

so \(\left( {f \circ f} \right)\left( n \right) = f\left( {n + 1} \right) = \left( {n + 1} \right) - 1 = n\)    A1

if \(n\) is odd, \(f\left( n \right) = n - 1\) which is even    A1

so \(\left( {f \circ f} \right)\left( n \right) = f\left( {n - 1} \right) = \left( {n - 1} \right) + 1 = n\)     A1

\(\left( {f \circ f} \right)\left( n \right) = n\) in both cases

hence \(f \circ f\) is the identity function     AG

[6 marks]

a.

suppose \(f\left( n \right) = f\left( m \right)\)     M1

applying \(f\) to both sides \( \Rightarrow n = m\)     R1

hence \(f\) is injective     AG

[2 marks]

b.i.

\(m = f\left( n \right)\) has solution \(n = f\left( m \right)\)       R1

hence surjective       AG

[1 mark]

b.ii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.6 » The identity element \(e\).

View options