Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2018 Marks available 6 Reference code 18M.3ca.hl.TZ0.2
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Find Question number 2 Adapted from N/A

Question

The function f is defined by

f(x)={|x2|+1x<2ax2+bxx

where a and b are real constants

Given that both f and its derivative are continuous at x = 2, find the value of a and the value of b.

Markscheme

considering continuity at x = 2

\mathop {{\text{lim}}}\limits_{x \to {2^ - }} f\left( x \right) = 1 and \mathop {{\text{lim}}}\limits_{x \to {2^ + }} f\left( x \right) = 4a + 2b    (M1)

4a + 2b = 1     A1

considering differentiability at x = 2

f'\left( x \right) = \left\{ {\begin{array}{*{20}{c}} { - 1}&{x < 2} \\ {2ax + b}&{x \geqslant 2} \end{array}} \right.    (M1)

\mathop {{\text{lim}}}\limits_{x \to {2^ - }} f'\left( x \right) =  - 1 and \mathop {{\text{lim}}}\limits_{x \to {2^ + }} f'\left( x \right) = 4a + b     (M1)

Note: The above M1 is for attempting to find the left and right limit of their derived piecewise function at x = 2.

4a + b =  - 1     A1

a =  - \frac{3}{4} and b = 2     A1

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 9 - Option: Calculus » 9.3 » Continuity and differentiability of a function at a point.

View options