Date | None Specimen | Marks available | 7 | Reference code | SPNone.3ca.hl.TZ0.4 |
Level | HL only | Paper | Paper 3 Calculus | Time zone | TZ0 |
Command term | Prove | Question number | 4 | Adapted from | N/A |
Question
Let \(f(x) = 2x + \left| x \right|\) , \(x \in \mathbb{R}\) .
Prove that f is continuous but not differentiable at the point (0, 0) .
Determine the value of \(\int_{ - a}^a {f(x){\text{d}}x} \) where \(a > 0\) .
Markscheme
we note that \(f(0) = 0,{\text{ }}f(x) = 3x\) for \(x > 0\) and \(f(x) = x{\text{ for }}x < 0\)
\(\mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} x = 0\) M1A1
\(\mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} 3x = 0\) A1
since \(f(0) = 0\) , the function is continuous when x = 0 AG
\(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f(0 + h) - f(0)}}{h} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{h}{h} = 1\) M1A1
\(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f(0 + h) - f(0)}}{h} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{3h}}{h} = 3\) A1
these limits are unequal R1
so f is not differentiable when x = 0 AG
[7 marks]
\(\int_{ - a}^a {f(x){\text{d}}x = \int_{ - a}^0 {x{\text{d}}x + \int_0^a {3x{\text{d}}x} } } \) M1
\( = \left[ {\frac{{{x^2}}}{2}} \right]_{ - a}^0 + \left[ {\frac{{3{x^2}}}{2}} \right]_0^a\) A1
\( = {a^2}\) A1
[3 marks]