User interface language: English | Español

Date None Specimen Marks available 7 Reference code SPNone.3ca.hl.TZ0.4
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Prove Question number 4 Adapted from N/A

Question

Let \(f(x) = 2x + \left| x \right|\) , \(x \in \mathbb{R}\) .

Prove that f is continuous but not differentiable at the point (0, 0) .

[7]
a.

Determine the value of \(\int_{ - a}^a {f(x){\text{d}}x} \) where \(a > 0\) .

[3]
b.

Markscheme

we note that \(f(0) = 0,{\text{ }}f(x) = 3x\) for \(x > 0\) and \(f(x) = x{\text{ for }}x < 0\)

\(\mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} x = 0\)     M1A1

\(\mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} 3x = 0\)     A1

since \(f(0) = 0\) , the function is continuous when x = 0     AG

\(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f(0 + h) - f(0)}}{h} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{h}{h} = 1\)     M1A1

\(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f(0 + h) - f(0)}}{h} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{3h}}{h} = 3\)     A1

these limits are unequal     R1

so f is not differentiable when x = 0     AG

[7 marks]

a.

\(\int_{ - a}^a {f(x){\text{d}}x = \int_{ - a}^0 {x{\text{d}}x + \int_0^a {3x{\text{d}}x} } } \)     M1

\( = \left[ {\frac{{{x^2}}}{2}} \right]_{ - a}^0 + \left[ {\frac{{3{x^2}}}{2}} \right]_0^a\)     A1

\( = {a^2}\)     A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 9 - Option: Calculus » 9.3 » Continuity and differentiability of a function at a point.

View options