Date | May 2018 | Marks available | 8 | Reference code | 18M.3dm.hl.TZ0.5 |
Level | HL only | Paper | Paper 3 Discrete mathematics | Time zone | TZ0 |
Command term | Use and Prove that | Question number | 5 | Adapted from | N/A |
Question
The Fibonacci sequence can be described by the recurrence relation \({f_{n + 2}} = {f_{n + 1}} + {f_n}\) where \({f_0} = 0,\,{f_1} = 1\).
Write down the auxiliary equation and use it to find an expression for \({f_n}\) in terms of \(n\).
It is known that \({\alpha ^2} = \alpha + 1\) where \(\alpha = \frac{{1 + \sqrt 5 }}{2}\).
For integers \(n\) ≥ 3, use strong induction on the recurrence relation \({f_{n + 2}} = {f_{n + 1}} + {f_n}\) to prove that \({f_n} > {\alpha ^{n - 2}}\).
Markscheme
attempt to find the auxiliary equation (\({\lambda ^2} - \lambda - 1 = 0\)) M1
\(\lambda = \frac{{1 \pm \sqrt 5 }}{2}\) (A1)
the general solution is \({f_n} = A{\left( {\frac{{1 + \sqrt 5 }}{2}} \right)^n} + B{\left( {\frac{{1 - \sqrt 5 }}{2}} \right)^n}\) (M1)
imposing initial conditions (substituting \(n\) = 0,1) M1
A + B = 0 and \(A\left( {\frac{{1 + \sqrt 5 }}{2}} \right) + B\left( {\frac{{1 - \sqrt 5 }}{2}} \right) = 1\) A1
\(A = \frac{1}{{\sqrt 5 }},\,\,B = - \frac{1}{{\sqrt 5 }}\) A1
\({f_n} = \frac{1}{{\sqrt 5 }}{\left( {\frac{{1 + \sqrt 5 }}{2}} \right)^n} - \frac{1}{{\sqrt 5 }}{\left( {\frac{{1 - \sqrt 5 }}{2}} \right)^n}\) A1
Note: Condone use of decimal numbers rather than exact answers.
[7 marks]
let P(\(n\)) be \({f_n} > {\alpha ^{n - 2}}\) for integers \(n\) ≥ 3
consideration of two consecutive values of \(f\) R1
\({f_3} = 2\) and \({\alpha ^{3 - 2}} = \frac{{1 + \sqrt 5 }}{2}\left( {1.618 \ldots } \right) \Rightarrow {\text{P}}\left( 3 \right)\) is true A1
\({f_4} = 3\) and \({\alpha ^{4 - 2}} = \frac{{3 + \sqrt 5 }}{2}\left( {2.618 \ldots } \right) \Rightarrow {\text{P}}\left( 4 \right)\) is true A1
Note: Do not award A marks for values of \(n\) other than \(n\) = 3 and \(n\) = 4.
(for \(k\) ≥ 4), assume that P(\(k\)) and P(\(k\) − 1) are true M1
required to prove that P(\(k\) + 1) is true
Note: Accept equivalent notation. Needs to start with 2 general consecutive integers and then prove for the next integer. This will affect the powers of the alphas.
\({f_{k + 1}} = {f_k} + {f_{k - 1}}\) (and \({f_k} > {\alpha ^{k - 2}},\,{f_{k - 1}} > {\alpha ^{k - 3}}\)) M1
\({f_{k + 1}} > {\alpha ^{k - 2}} + {\alpha ^{k - 3}} = {\alpha ^{k - 3}}\left( {\alpha + 1} \right)\) A1
\( = {\alpha ^{k - 3}}{\alpha ^2} = {\alpha ^{k - 1}} = {\alpha ^{\left( {k + 1} \right) - 2}}\) A1
as P(3) and P(4) are true, and P(\(k\)) , P(\(k\) − 1) true ⇒ P(\(k\) + 1) true then P(\(k\)) is true for \(k\) ≥ 3 by strong induction R1
Note: To obtain the final R1, at least five of the previous marks must have been awarded.
[8 marks]