Date | May 2014 | Marks available | 5 | Reference code | 14M.2.hl.TZ2.9 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Find | Question number | 9 | Adapted from | N/A |
Question
Sand is being poured to form a cone of height \(h\) cm and base radius \(r\) cm. The height remains equal to the base radius at all times. The height of the cone is increasing at a rate of \(0.5{\text{ cm}}\,{\text{mi}}{{\text{n}}^{ - 1}}\).
Find the rate at which sand is being poured, in \({\text{c}}{{\text{m}}^3}\,{\text{mi}}{{\text{n}}^{ - 1}}\), when the height is 4 cm.
Markscheme
METHOD 1
volume of a cone is \(V = \frac{1}{3}\pi {r^2}h\)
given \(h = r,{\text{ }}V = \frac{1}{3}\pi {h^3}\) M1
\(\frac{{{\text{d}}V}}{{{\text{d}}h}} = \pi {h^2}\) (A1)
when \(h = 4,{\text{ }}\frac{{{\text{d}}V}}{{{\text{d}}t}} = \pi \times {4^2} \times 0.5{\text{ (using }}\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{{{\text{d}}V}}{{{\text{d}}h}} \times \frac{{{\text{d}}h}}{{{\text{d}}t}})\) M1A1
\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = 8\pi {\text{ }}( = 25.1){\text{ (c}}{{\text{m}}^3}\,{\text{mi}}{{\text{n}}^{ - 1}})\) A1
METHOD 2
volume of a cone is \(V = \frac{1}{3}\pi {r^2}h\)
given \(h = r,{\text{ }}V = \frac{1}{3}\pi {h^3}\) M1
\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{1}{3}\pi \times 3{h^2} \times \frac{{{\text{d}}h}}{{{\text{d}}t}}\) A1
when \(h = 4,{\text{ }}\frac{{{\text{d}}V}}{{{\text{d}}t}} = \pi \times {4^2} \times 0.5\) M1A1
\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = 8\pi {\text{ }}( = 25.1){\text{ (c}}{{\text{m}}^3}\,{\text{mi}}{{\text{n}}^{ - 1}})\) A1
METHOD 3
\(V = \frac{1}{3}\pi {r^2}h\)
\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{1}{3}\pi \left( {2rh\frac{{{\text{d}}r}}{{{\text{d}}t}} + {r^2}\frac{{{\text{d}}h}}{{{\text{d}}t}}} \right)\) M1A1
Note: Award M1 for attempted implicit differentiation and A1 for each correct term on the RHS.
when \(h = 4,{\text{ }}r = 4,{\text{ }}\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{1}{3}\pi \left( {2 \times 4 \times 4 \times 0.5 + {4^2} \times 0.5} \right)\) M1A1
\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = 8\pi {\text{ }}( = 25.1){\text{ (c}}{{\text{m}}^3}\,{\text{mi}}{{\text{n}}^{ - 1}})\) A1
[5 marks]