Date | May 2017 | Marks available | 9 | Reference code | 17M.1.hl.TZ2.8 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Prove | Question number | 8 | Adapted from | N/A |
Question
Prove by mathematical induction that \(\left( {\begin{array}{*{20}{c}} 2 \\ 2 \end{array}} \right) + \left( {\begin{array}{*{20}{c}} 3 \\ 2 \end{array}} \right) + \left( {\begin{array}{*{20}{c}} 4 \\ 2 \end{array}} \right) + \ldots + \left( {\begin{array}{*{20}{c}} {n - 1} \\ 2 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} n \\ 3 \end{array}} \right)\), where \(n \in \mathbb{Z},n \geqslant 3\).
Markscheme
\(\left( {\begin{array}{*{20}{c}} 2 \\ 2 \end{array}} \right) + \left( {\begin{array}{*{20}{c}} 3 \\ 2 \end{array}} \right) + \left( {\begin{array}{*{20}{c}} 4 \\ 2 \end{array}} \right) + \ldots + \left( {\begin{array}{*{20}{c}} {n - 1} \\ 2 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} n \\ 3 \end{array}} \right)\)
show true for \(n = 3\) (M1)
\({\text{LHS}} = \left( {\begin{array}{*{20}{c}} 2 \\ 2 \end{array}} \right) = 1\) \(\,\,\,\) \({\text{RHS}} = \left( {\begin{array}{*{20}{c}} 3 \\ 3 \end{array}} \right) = 1\) A1
hence true for \(n = 3\)
assume true for \(n = k:\left( {\begin{array}{*{20}{c}} 2 \\ 2 \end{array}} \right) + \left( {\begin{array}{*{20}{c}} 3 \\ 2 \end{array}} \right) + \left( {\begin{array}{*{20}{c}} 4 \\ 2 \end{array}} \right) + \ldots + \left( {\begin{array}{*{20}{c}} {k - 1} \\ 2 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} k \\ 3 \end{array}} \right)\) M1
consider for \(n = k + 1:\left( {\begin{array}{*{20}{c}} 2 \\ 2 \end{array}} \right) + \left( {\begin{array}{*{20}{c}} 3 \\ 2 \end{array}} \right) + \left( {\begin{array}{*{20}{c}} 4 \\ 2 \end{array}} \right) + \ldots + \left( {\begin{array}{*{20}{c}} {k - 1} \\ 2 \end{array}} \right) + \left( {\begin{array}{*{20}{c}} k \\ 2 \end{array}} \right)\) (M1)
\( = \left( {\begin{array}{*{20}{c}} k \\ 3 \end{array}} \right) + \left( {\begin{array}{*{20}{c}} k \\ 2 \end{array}} \right)\) A1
\( = \frac{{k!}}{{(k - 3)!3!}} + \frac{{k!}}{{(k - 2)!2!}}\,\,\,\left( { = \frac{{k!}}{{3!}}\left[ {\frac{1}{{(k - 3)!}} + \frac{3}{{(k - 2)!}}} \right]} \right)\) or any correct expression with a visible common factor (A1)
\( = \frac{{k!}}{{3!}}\left[ {\frac{{k - 2 + 3}}{{(k - 2)!}}} \right]\) or any correct expression with a common denominator (A1)
\( = \frac{{k!}}{{3!}}\left[ {\frac{{k + 1}}{{(k - 2)!}}} \right]\)
Note: At least one of the above three lines or equivalent must be seen.
\( = \frac{{(k + 1)!}}{{3!(k - 2)!}}\) or equivalent A1
\( = \left( {\begin{array}{*{20}{c}} {k + 1} \\ 3 \end{array}} \right)\)
Result is true for \(k = 3\). If result is true for \(k\) it is true for \(k + 1\). Hence result is true for all \(k \geqslant 3\). Hence proved by induction. R1
Note: In order to award the R1 at least [5 marks] must have been awarded.
[9 marks]