Processing math: 100%

User interface language: English | Español

Date November 2016 Marks available 7 Reference code 16N.3srg.hl.TZ0.3
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term State and Write down Question number 3 Adapted from N/A

Question

An Abelian group, {G, }, has 12 different elements which are of the form aibj where i{1, 2, 3, 4} and j{1, 2, 3}. The elements a and b satisfy a4=e and b3=e where e is the identity.

Let {H, } be the proper subgroup of {G, } having the maximum possible order.

State the possible orders of an element of {G, } and for each order give an example of an element of that order.

[8]
a.

(i)     State a generator for {H, }.

(ii)     Write down the elements of {H, }.

(iii)     Write down the elements of the coset of H containing a.

[7]
b.

Markscheme

orders are 1 2 3 4 6 12     A2

 

Note: A1 for four or five correct orders.

 

Note: For the rest of this question condone absence of xxx and accept equivalent expressions.

 

order:1element:2A12a2A13b or b2A14a or a3A16a2b or a2b2A112ab or ab2 or a3b or a3b2A1

[8 marks]

a.

(i)     H has order 6     (R1)

generator is a2b or a2b2     A1

(ii)     H={e, a2b, b2, a2, b, a2b2}     A3

 

Note: A2 for 4 or 5 correct. A1 for 2 or 3 correct.

 

(iii)     required coset is Ha (or aH)     (R1)

Ha={a, a3b, ab2, a3, ab, a3b2}    A1

[7 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.9 » The order of a group.

View options