User interface language: English | Español

Date November 2016 Marks available 8 Reference code 16N.3srg.hl.TZ0.3
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term State Question number 3 Adapted from N/A

Question

An Abelian group, \(\{ G,{\text{ }} * \} \), has 12 different elements which are of the form \({a^i} * {b^j}\) where \(i \in \{ 1,{\text{ }}2,{\text{ }}3,{\text{ }}4\} \) and \(j \in \{ 1,{\text{ }}2,{\text{ }}3\} \). The elements \(a\) and \(b\) satisfy \({a^4} = e\) and \({b^3} = e\) where \(e\) is the identity.

Let \(\{ H,{\text{ }} * \} \) be the proper subgroup of \(\{ G,{\text{ }} * \} \) having the maximum possible order.

State the possible orders of an element of \(\{ G,{\text{ }} * \} \) and for each order give an example of an element of that order.

[8]
a.

(i)     State a generator for \(\{ H,{\text{ }} * \} \).

(ii)     Write down the elements of \(\{ H,{\text{ }} * \} \).

(iii)     Write down the elements of the coset of \(H\) containing \(a\).

[7]
b.

Markscheme

orders are 1 2 3 4 6 12     A2

 

Note: A1 for four or five correct orders.

 

Note: For the rest of this question condone absence of xxx and accept equivalent expressions.

 

\(\begin{array}{*{20}{l}} {{\text{order:}}}&1&{{\text{element:}}}&2&{A1} \\ {}&2&{}&{{a^2}}&{A1} \\ {}&3&{}&{b{\text{ or }}{{\text{b}}^2}}&{A1} \\ {}&4&{}&{a{\text{ or }}{a^3}}&{A1} \\ {}&6&{}&{{a^2} * b{\text{ or }}{a^2} * {b^2}}&{A1} \\ {}&{12}&{}&{a * b{\text{ or }}a * {b^2}{\text{ or }}{a^3} * b{\text{ or }}{a^3} * {b^2}}&{A1} \end{array}\)

[8 marks]

a.

(i)     \(H\) has order 6     (R1)

generator is \({a^2} * b\) or \({a^2} * {b^2}\)     A1

(ii)     \(H = \left\{ {e,{\text{ }}{a^2} * b,{\text{ }}{b^2},{\text{ }}{a^2},{\text{ }}b,{\text{ }}{a^2} * {b^2}} \right\}\)     A3

 

Note: A2 for 4 or 5 correct. A1 for 2 or 3 correct.

 

(iii)     required coset is \(Ha\) (or \(aH\))     (R1)

\(Ha = \left\{ {a,{\text{ }}{a^3} * b,{\text{ }}a * {b^2},{\text{ }}{a^3},{\text{ }}a * b,{\text{ }}{a^3} * {b^2}} \right\}\)    A1

[7 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.9 » The order of a group.

View options