Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2016 Marks available 5 Reference code 16N.2.hl.TZ0.11
Level HL only Paper 2 Time zone TZ0
Command term Hence and State Question number 11 Adapted from N/A

Question

A Chocolate Shop advertises free gifts to customers that collect three vouchers. The vouchers are placed at random into 10% of all chocolate bars sold at this shop. Kati buys some of these bars and she opens them one at a time to see if they contain a voucher. Let P(X=n) be the probability that Kati obtains her third voucher on the nth bar opened.

(It is assumed that the probability that a chocolate bar contains a voucher stays at 10% throughout the question.)

It is given that P(X=n)=n2+an+b2000×0.9n3 for n.

Kati’s mother goes to the shop and buys x chocolate bars. She takes the bars home for Kati to open.

Show that {\text{P}}(X = 3) = 0.001 and {\text{P}}(X = 4) = 0.0027.

[3]
a.

Find the values of the constants a and b.

[5]
b.

Deduce that \frac{{{\text{P}}(X = n)}}{{{\text{P}}(X = n - 1)}} = \frac{{0.9(n - 1)}}{{n - 3}} for n > 3.

[4]
c.

(i)     Hence show that X has two modes {m_1} and {m_2}.

(ii)     State the values of {m_1} and {m_2}.

[5]
d.

Determine the minimum value of x such that the probability Kati receives at least one free gift is greater than 0.5.

[3]
e.

Markscheme

{\text{P}}(X = 3) = {(0.1)^3}    A1

= 0.001    AG

{\text{P}}(X = 4) = {\text{P}}(VV\bar VV) + {\text{P}}(V\bar VVV) + {\text{P}}(\bar VVVV)    (M1)

= 3 \times {(0.1)^3} \times 0.9 (or equivalent)     A1

= 0.0027    AG

[3 marks]

a.

METHOD 1

attempting to form equations in a and b     M1

\frac{{9 + 3a + b}}{{2000}} = \frac{1}{{1000}}{\text{ }}(3a + b =  - 7)    A1

\frac{{16 + 4a + b}}{{2000}} \times \frac{9}{{10}} = \frac{{27}}{{10\,000}}{\text{ }}(4a + b =  - 10)    A1

attempting to solve simultaneously     (M1)

a =  - 3,{\text{ }}b = 2    A1

METHOD 2

{\text{P}}(X = n) = \left( {\begin{array}{*{20}{c}} {n - 1} \\ 2 \end{array}} \right) \times {0.1^3} \times {0.9^{n - 3}}    M1

= \frac{{(n - 1)(n - 2)}}{{2000}} \times {0.9^{n - 3}}    (M1)A1

= \frac{{{n^2} - 3n + 2}}{{2000}} \times {0.9^{n - 3}}    A1

a =  - 3,b = 2    A1

 

Note: Condone the absence of {0.9^{n - 3}} in the determination of the values of a and b.

 

[5 marks]

b.

METHOD 1

EITHER

{\text{P}}(X = n) = \frac{{{n^2} - 3n + 2}}{{2000}} \times {0.9^{n - 3}}    (M1)

OR

{\text{P}}(X = n) = \left( {\begin{array}{*{20}{c}} {n - 1} \\ 2 \end{array}} \right) \times {0.1^3} \times {0.9^{n - 3}}    (M1)

THEN

= \frac{{(n - 1)(n - 2)}}{{2000}} \times {0.9^{n - 3}}    A1

{\text{P}}(X = n - 1) = \frac{{(n - 2)(n - 3)}}{{2000}} \times {0.9^{n - 4}}    A1

\frac{{{\text{P}}(X = n)}}{{{\text{P}}(X = n - 1)}} = \frac{{(n - 1)(n - 2)}}{{(n - 2)(n - 3)}} \times 0.9    A1

= \frac{{0.9(n - 1)}}{{n - 3}}    AG

METHOD 2

\frac{{{\text{P}}(X = n)}}{{{\text{P}}(X = n - 1)}} = \frac{{\frac{{{n^2} - 3n + 2}}{{2000}} \times {{0.9}^{n - 3}}}}{{\frac{{{{(n - 1)}^2} - 3(n - 1) + 2}}{{2000}} \times {{0.9}^{n - 4}}}}    (M1)

= \frac{{0.9({n^2} - 3n + 2)}}{{({n^2} - 5n + 6)}}    A1A1

 

Note: Award A1 for a correct numerator and A1 for a correct denominator.

 

= \frac{{0.9(n - 1)(n - 2)}}{{(n - 2)(n - 3)}}    A1

= \frac{{0.9(n - 1)}}{{n - 3}}    AG

[4 marks]

c.

(i)     attempting to solve \frac{{0.9(n - 1)}}{{n - 3}} = 1 for n     M1

n = 21    A1

\frac{{0.9(n - 1)}}{{n - 3}} < 1 \Rightarrow n > 21    R1

\frac{{0.9(n - 1)}}{{n - 3}} > 1 \Rightarrow n < 21    R1

X has two modes     AG

 

Note: Award R1R1 for a clearly labelled graphical representation of the two inequalities (using \frac{{{\text{P}}(X = n)}}{{{\text{P}}(X = n - 1)}}).

 

(ii)     the modes are 20 and 21     A1

[5 marks]

d.

METHOD 1

Y \sim {\text{B}}(x,{\text{ }}0.1)    (A1)

attempting to solve {\text{P}}(Y \geqslant 3) > 0.5 (or equivalent eg 1 - {\text{P}}(Y \leqslant 2) > 0.5) for x     (M1)

 

Note: Award (M1) for attempting to solve an equality (obtaining x = 26.4).

 

x = 27    A1

METHOD 2

\sum\limits_{n = 0}^x {{\text{P}}(X = n) > 0.5}    (A1)

attempting to solve for x     (M1)

x = 27    A1

[3 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.1 » Concepts of population, sample, random sample and frequency distribution of discrete and continuous data.

View options