Date | November 2016 | Marks available | 1 | Reference code | 16N.1.SL.TZ0.17 |
Level | Standard level | Paper | Paper 1 | Time zone | Time zone 0 |
Command term | Question number | 17 | Adapted from | N/A |
Question
A student stands a distance L from a wall and claps her hands. Immediately on hearing the reflection from the wall she claps her hands again. She continues to do this, so that successive claps and the sound of reflected claps coincide. The frequency at which she claps her hands is f. What is the speed of sound in air?
A. \(\frac{L}{{2f}}\)
B. \(\frac{L}{f}\)
C. Lf
D. 2Lf
Markscheme
D
Examiners report
[N/A]
Syllabus sections
Show 54 related questions
- 17N.1.SL.TZ0.13: What is the phase difference, in rad, between the centre of a compression and the centre of...
- 17M.2.HL.TZ1.7e.ii: Explain whether P is at the centre of a compression or the centre of a rarefaction.
- 17M.2.HL.TZ1.7e.i: State the direction of motion of P on the spring.
- 17M.1.HL.TZ1.12: A travelling wave of period 5.0 ms travels along a stretched string at a speed of 40 m...
- 17M.1.SL.TZ2.15: The graph shows the variation with distance x of the displacement of the particles of a...
- 17M.1.SL.TZ2.14: A girl in a stationary boat observes that 10 wave crests pass the boat every minute. What is...
- 17M.1.SL.TZ1.15: Two pulses are travelling towards each other. What is a possible pulse shape when the...
- 17M.1.SL.TZ1.14: What statement about X-rays and ultraviolet radiation is correct? A. X-rays travel faster...
- 16M.2.HL.TZ0.4b: (i) Calculate the speed of this wave. (ii) Show that the angular frequency of oscillations...
- 16M.2.SL.TZ0.4c: The equilibrium position of a particle in the medium is at x=0.80 m. For this particle at...
- 16M.2.SL.TZ0.4b: Calculate, for this wave, (i) the speed. (ii) the frequency.
- 16M.2.SL.TZ0.4a: State what is meant by a longitudinal travelling wave.
- 15M.1.HL.TZ2.12: A wave pulse is sent along a light string which is attached to a heavy rope as shown. The...
- 15M.2.SL.TZ1.5e: The sound waves from the loudspeaker travel in air with speed 330 ms−1. (i) Calculate the...
- 15M.2.SL.TZ1.5f: A second loudspeaker S emits the same frequency as L but vibrates out of phase with L. The...
- 14M.1.SL.TZ1.12: A wave of period 5.0m s travels through a medium. The graph shows the variation with distance...
- 14M.1.SL.TZ2.16: The diagram shows, at a particular instant in time, part of a rope along which a wave is...
- 15N.1.SL.TZ0.14: A transverse travelling wave has an amplitude \({x_0}\) and wavelength \(\lambda \). What is...
- 15N.2.SL.TZ0.4e.ii: Deduce the frequency of wave B.
- 15N.1.SL.TZ0.15: A wave on a string travels to the right as shown. The frequency of the wave is \(f\). At time...
- 14M.3.SL.TZ1.19b: A charge moves backwards and forwards along a wire, as shown in the diagram...
- 15N.2.SL.TZ0.4d: State the amplitude of wave A.
- 15N.2.SL.TZ0.4e.i: Wave A has a frequency of 9.0 Hz. Calculate the velocity of wave A.
- 14N.2.SL.TZ0.5c.i: Calculate the wavelength of an infrared wave with a frequency equal to that of the model in (b).
- 11N.1.SL.TZO.15: Which of the following gives regions of the electromagnetic spectrum in the order of...
- 11N.1.HL.TZ0.14: Which of the following gives regions of the electromagnetic spectrum in the order of...
- 13N.1.SL.TZ0.14: Which of the following correctly relates the direction of oscillation of the particles in a...
- 13M.1.HL.TZ1.17: Unpolarized light of intensity I0 is transmitted through a polarizer which has a transmission...
- 13M.1.HL.TZ1.11: Gas particles are equally spaced along a straight line. A sound wave passes through the gas....
- 12M.1.SL.TZ2.14: A wave pulse is travelling along a dense thick rope which is connected to a less dense thin...
- 12M.1.SL.TZ1.14: What region of the electromagnetic spectrum includes waves of wavelength 5 ×10–8 m? A....
- 13M.2.SL.TZ2.8c: The oscillations of P initially set up a longitudinal wave in the gas. (i) Describe, with...
- 13M.1.SL.TZ2.15: Which of the following correctly describes the direction of a ray drawn relative to a...
- 12M.2.SL.TZ2.5c: A light spring is stretched horizontally and a longitudinal travelling wave is set up in the...
- 11M.2.SL.TZ2.4c: A wave is travelling along a string. The string can be modelled...
- 11N.2.SL.TZ0.6a: On the diagram above, identify (i) with an arrow, the direction of movement of marker P at...
- 11N.2.SL.TZ0.8b: The graph shows the variation with frequency of the percentage transmittance of...
- 11M.3.SL.TZ2.19a: State two properties that are common to all electromagnetic waves.
- 11N.2.SL.TZ0.6b: The wavelength of the wave is 25mm and its speed is 18mms–1. (i) Calculate the time period T...
- 11N.3.SL.TZ0.15a: Outline the nature of electromagnetic waves.
- 12N.2.SL.TZ0.6c: Describe the difference between transverse waves and longitudinal waves.
- 12M.3.SL.TZ2.17b: State two cases in which electrons may produce electromagnetic waves.
- 12M.3.SL.TZ2.17a: Outline what is meant by an electromagnetic wave.
- 13N.2.SL.TZ0.5c: The particle P in (b) is a particle in medium M1 through which a transverse wave is...
- 11M.1.SL.TZ1.13: A transverse wave travels from left to right. The diagram below shows how, at a particular...
- 11M.1.SL.TZ1.16: Which of the following electromagnetic waves has a frequency greater than that of visible...
- 11M.2.SL.TZ1.5b: Graph 2 shows the variation with position d of the displacement x of particles in the medium...
- 11M.2.SL.TZ1.5c: Graph 2 – reproduced to assist with answering (c)(i). (c) The diagram shows the...
- 11M.3.SL.TZ1.19a: State an approximate value for the wavelength of visible light.
- 09M.1.SL.TZ1.14: In which of the following regions of the electromagnetic spectrum is radiation of wavelength...
- 10N.1.SL.TZ0.14: One end of a horizontal string is fixed to a wall. A transverse pulse moves along the string...
- 09N.1.HL.TZ0.14: Which of the following is the best estimate of the wavelength? A. 2 cm B. 4 cm C. ...
- 10M.1.SL.TZ1.14: Which of the following is a value of wavelength that is found in the visible region of the...
- 09N.1.HL.TZ0.15: Which of the following is the best estimate of the amplitude? A. 0.4 cm B. 0.8...