Date | May 2015 | Marks available | 7 | Reference code | 15M.2.HL.TZ2.6 |
Level | Higher level | Paper | Paper 2 | Time zone | Time zone 2 |
Command term | Explain | Question number | 6 | Adapted from | N/A |
Question
Draw a labelled diagram of the human heart showing the attached blood vessels.
Describe the action of the heart in pumping blood.
All parts of the body change the composition of the blood. Explain how the nephron changes the composition of blood.
Markscheme
NB: Drawings must be correctly proportioned and clearly drawn showing connections between structures. The drawing may show the heart without contraction or in any stage of contraction. Award [1] for any correctly labelled part that has been drawn to the stated standards.
a. atria/right atrium/left atrium – shown above the ventricles and must not be bigger than ventricles;
b. ventricle/left ventricle/right ventricle – below the atria, must have thicker walls than atria;
c. vena cava/superior vena cave/inferior vena cava – connected to right atrium;
d. pulmonary artery – shown from right ventricle (to lungs);
e. pulmonary vein(s) – shown (from lungs) to left atrium;
f. aorta – shown as large artery from left ventricle out of heart;
g. AV valves/atrioventricular valves / mitral/bicuspid and tricuspid – named correctly and shown between both atria and ventricles and labelled at least on one side;
h. semilunar valves – shown in aorta/pulmonary artery;
Valves need to open in correct direction.
a. (both) atria collect blood (from veins);
b. sinoatrial/SA node sends impulses to muscle/fibres initiating contraction;
c. blood is pushed to ventricles by contraction of atria/atrial systole;
d. AV (atrioventricular) valves are open (as atria contract);
e. semilunar valves are closed so that ventricles fill with blood;
f. ventricles contract / ventricular systole;
g. AV (atrioventricular) valves close ( preventing backflow);
h. (blood is pushed through the) semilunar valves/pulmonary artery and aorta;
i. when ventricles relax /diastole, semilunar valves close preventing backflow of blood;
Do not accept the description of blood flow without a clear action.
Do not accept general statements such as systole = heart contraction and diastole = heart relaxation.
[4 max] if answer suggests that left and right sides are contracting at different times or simultaneous contraction not indicated.
Remember, up to TWO “quality of construction” marks per essay.
a. higher nitrogen/urea as blood enters nephron/Bowman’s capsule than when it leaves the nephron (in the renal vein);
b. most small soluble molecules/glucose/nutrients/ions are removed from blood in Bowman’s capsule;
c. through ultrafiltration;
d. proteins / blood cells / large molecules remain in the blood;
e. as filtrate moves through the nephron (tubule), water is returned to the blood (by osmosis);
f. glucose/nutrients is returned to blood by active transport (and diffusion) / selective reabsorption;
g. in the proximal convoluted tubule;
h. urea / uric acid remain in the filtrate / removed from blood;
i. sodium is pumped into the medulla in the loop of Henlé;
j. water reabsorption is enhanced by a high sodium gradient (in the medulla);
k. permeability of the collecting duct membrane is regulated by hormones / ADH;
l. water concentration in urine is variable to maintain homeostasis in the blood;
m. more oxygen/less carbon dioxide in blood entering (kidney) than in blood leaving (kidney);
Examiners report
Common problems in student diagrams included: errors in representing the relative size of chambers, errors in representing the relative thickness of walls, failing to show connections of vessels to the correct chambers and representing those connections. Lastly drawing valves with care including their correct orientation.
It was rare for students to discuss simultaneous contractions within the cardiac cycle. Most framed their answers as a sequential flow of blood.
Students appear to know this topic well as many full mark answers were awarded.