Date | None Specimen | Marks available | 7 | Reference code | SPNone.2.hl.TZ0.8 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Find and Show that | Question number | 8 | Adapted from | N/A |
Question
Given that the elements of a 2×2 symmetric matrix are real, show that
(i) the eigenvalues are real;
(ii) the eigenvectors are orthogonal if the eigenvalues are distinct.
The matrix \boldsymbol{A} is given by\boldsymbol{A} = \left( {\begin{array}{*{20}{c}} {11}&{\sqrt 3 }\\ {\sqrt 3 }&9 \end{array}} \right) .Find the eigenvalues and eigenvectors of \boldsymbol{A}.
The ellipse E has equation {{\boldsymbol{X}}^T}{\boldsymbol{AX}} = 24 where \boldsymbol{X} = \left( \begin{array}{l} x\\ y \end{array} \right) and \boldsymbol{A} is as defined in part (b).
(i) Show that E can be rotated about the origin onto the ellipse E' having equation 2{x^2} + 3{y^2} = 6 .
(ii) Find the acute angle through which E has to be rotated to coincide with E' .
Markscheme
(i) let \boldsymbol{M} = \left( {\begin{array}{*{20}{c}} a&b\\ b&c \end{array}} \right) (M1)
the eigenvalues satisfy
\det (\boldsymbol{M} - \lambda \boldsymbol{I}) = 0 (M1)
(a - \lambda )(c - \lambda ) - {b^2} = 0 (A1)
{\lambda ^2} - \lambda (a + c) + ac - {b^2} = 0 A1
discriminant = {(a + c)^2} - 4(ac - {b^2}) M1
= {(a - c)^2} + 4{b^2} \ge 0 A1
this shows that the eigenvalues are real AG
(ii) let the distinct eigenvalues be {\lambda _1},{\lambda _2} , with eigenvectors {{\boldsymbol{X}}_1}, {{\boldsymbol{X}}_2}
then
{\lambda _1}{{\boldsymbol{X}}_1} = {\boldsymbol{M}}{{\boldsymbol{X}}_1} and {\lambda _2}{{\boldsymbol{X}}_2} = {\boldsymbol{M}}{{\boldsymbol{X}}_1} M1
transpose the first equation and postmultiply by {{\boldsymbol{X}}_2} to give
{\lambda _1}{\boldsymbol{X}}_1^T{{\boldsymbol{X}}_2} = {\boldsymbol{X}}_1^T{\boldsymbol{M}}{{\boldsymbol{X}}_2} A1
premultiply the second equation by {\boldsymbol{X}}_1^T
{\lambda _2}{\boldsymbol{X}}_1^T{{\boldsymbol{X}}_2} = {\boldsymbol{X}}_1^T{\boldsymbol{M}}{{\boldsymbol{X}}_2} A1
it follows that
(\lambda 1 - {\lambda _2}){\boldsymbol{X}}_1^T{{\boldsymbol{X}}_2} = 0 A1
since \lambda 1 \ne {\lambda _2} , it follows that {\boldsymbol{X}}_1^T{{\boldsymbol{X}}_2} = 0 so that the eigenvectors are orthogonal R1
[11 marks]
the eigenvalues satisfy \left| \begin{array}{l} 11 - \lambda \\ \sqrt 3 \end{array} \right.\left. \begin{array}{l} \sqrt 3 \\ 9 - \lambda \end{array} \right| = 0 M1A1
{\lambda ^2} - 20\lambda + 96 = 0 A1
\lambda = 8,12 A1
first eigenvector satisfies
\left( {\begin{array}{*{20}{c}} 3&{\sqrt 3 }\\ {\sqrt 3 }&1 \end{array}} \right)\left( \begin{array}{l} x\\ y \end{array} \right) = \left( \begin{array}{l} 0\\ 0 \end{array} \right) M1
\left( \begin{array}{l} x\\ y \end{array} \right) = (any multiple of) \left( {\begin{array}{*{20}{c}} 1\\ { - \sqrt 3 } \end{array}} \right) A1
second eigenvector satisfies
\left( {\begin{array}{*{20}{c}} { - 1}&{\sqrt 3 }\\ {\sqrt 3 }&{ - 3} \end{array}} \right)\left( \begin{array}{l} x\\ y \end{array} \right) = \left( \begin{array}{l} 0\\ 0 \end{array} \right)
\left( \begin{array}{l} x\\ y \end{array} \right) = (any multiple of ) \left( {\begin{array}{*{20}{c}} {\sqrt 3 }\\ 1 \end{array}} \right) A1
[7 marks]
(i) consider the rotation in which (x,y) is transformed onto (x',y') defined by
\left( \begin{array}{l} {x'}\\ {y'} \end{array} \right) = \left( {\begin{array}{*{20}{c}} {\frac{1}{2}}&{ - \frac{{\sqrt 3 }}{2}}\\ {\frac{{\sqrt 3 }}{2}}&{\frac{1}{2}} \end{array}} \right)\left( \begin{array}{l} x\\ y \end{array} \right) so that \left( \begin{array}{l} x\\ y \end{array} \right) = \left( {\begin{array}{*{20}{c}} {\frac{1}{2}}&{\frac{{\sqrt 3 }}{2}}\\ { - \frac{{\sqrt 3 }}{2}}&{\frac{1}{2}} \end{array}} \right)\left( \begin{array}{l} {x'}\\ {y'} \end{array} \right) M1A1
the ellipse E becomes
\left( {\begin{array}{*{20}{c}} {x'}&{y'} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {\frac{1}{2}}&{ - \frac{{\sqrt 3 }}{2}}\\ {\frac{{\sqrt 3 }}{2}}&{\frac{1}{2}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {11}&{\sqrt 3 }\\ {\sqrt 3 }&9 \end{array}} \right)\left( {\begin{array}{*{20}{c}} {\frac{1}{2}}&{\frac{{\sqrt 3 }}{2}}\\ { - \frac{{\sqrt 3 }}{2}}&{\frac{1}{2}} \end{array}} \right)\left( \begin{array}{l} {x'}\\ {y'} \end{array} \right) = 24 M1A1
\left( {\begin{array}{*{20}{c}} {x'}&{y'} \end{array}} \right)\left( {\begin{array}{*{20}{c}} 8&0\\ 0&{12} \end{array}} \right)\left( \begin{array}{l} {x'}\\ {y'} \end{array} \right) = 24 A1
2{(x')^2} + 3{(y')^2} = 6 AG
(ii) the angle of rotation is given by \cos \theta = \frac{1}{2},\sin \theta = \frac{{\sqrt 3 }}{2} M1
since a rotational matrix has the form \left( {\begin{array}{*{20}{c}} {\cos \theta }&{ - \sin \theta }\\ {\sin \theta }&{\cos \theta } \end{array}} \right)
so \theta = {60^ \circ } (anticlockwise) A1
[7 marks]