Processing math: 1%

User interface language: English | Español

Date None Specimen Marks available 7 Reference code SPNone.2.hl.TZ0.8
Level HL only Paper 2 Time zone TZ0
Command term Find and Show that Question number 8 Adapted from N/A

Question

Given that the elements of a 2×2 symmetric matrix are real, show that

  (i)     the eigenvalues are real;

  (ii)     the eigenvectors are orthogonal if the eigenvalues are distinct.

[11]
a.

The matrix \boldsymbol{A} is given by\boldsymbol{A} = \left( {\begin{array}{*{20}{c}} {11}&{\sqrt 3 }\\ {\sqrt 3 }&9 \end{array}} \right) .Find the eigenvalues and eigenvectors of \boldsymbol{A}.

[7]
b.

The ellipse E has equation {{\boldsymbol{X}}^T}{\boldsymbol{AX}} = 24 where \boldsymbol{X} = \left( \begin{array}{l} x\\ y \end{array} \right) and \boldsymbol{A} is as defined in part (b).

   (i)     Show that E can be rotated about the origin onto the ellipse E' having equation 2{x^2} + 3{y^2} = 6 .

   (ii)     Find the acute angle through which E has to be rotated to coincide with E' .

[7]
c.

Markscheme

(i)     let \boldsymbol{M} = \left( {\begin{array}{*{20}{c}} a&b\\ b&c \end{array}} \right)     (M1)

the eigenvalues satisfy

\det (\boldsymbol{M} - \lambda \boldsymbol{I}) = 0     (M1)

(a - \lambda )(c - \lambda ) - {b^2} = 0     (A1)

{\lambda ^2} - \lambda (a + c) + ac - {b^2} = 0     A1

discriminant = {(a + c)^2} - 4(ac - {b^2})     M1

= {(a - c)^2} + 4{b^2} \ge 0     A1

this shows that the eigenvalues are real     AG

 

(ii)     let the distinct eigenvalues be {\lambda _1},{\lambda _2}  , with eigenvectors {{\boldsymbol{X}}_1}, {{\boldsymbol{X}}_2}

then

{\lambda _1}{{\boldsymbol{X}}_1} = {\boldsymbol{M}}{{\boldsymbol{X}}_1} and {\lambda _2}{{\boldsymbol{X}}_2} = {\boldsymbol{M}}{{\boldsymbol{X}}_1}     M1

transpose the first equation and postmultiply by {{\boldsymbol{X}}_2} to give

{\lambda _1}{\boldsymbol{X}}_1^T{{\boldsymbol{X}}_2} = {\boldsymbol{X}}_1^T{\boldsymbol{M}}{{\boldsymbol{X}}_2}     A1

premultiply the second equation by {\boldsymbol{X}}_1^T

{\lambda _2}{\boldsymbol{X}}_1^T{{\boldsymbol{X}}_2} = {\boldsymbol{X}}_1^T{\boldsymbol{M}}{{\boldsymbol{X}}_2}     A1

it follows that

(\lambda 1 - {\lambda _2}){\boldsymbol{X}}_1^T{{\boldsymbol{X}}_2} = 0     A1

since \lambda 1 \ne {\lambda _2} , it follows that {\boldsymbol{X}}_1^T{{\boldsymbol{X}}_2} = 0 so that the eigenvectors are orthogonal     R1

 

[11 marks]

a.

the eigenvalues satisfy \left| \begin{array}{l} 11 - \lambda \\ \sqrt 3 \end{array} \right.\left. \begin{array}{l} \sqrt 3 \\ 9 - \lambda \end{array} \right| = 0     M1A1

{\lambda ^2} - 20\lambda  + 96 = 0    A1

\lambda  = 8,12     A1

first eigenvector satisfies

\left( {\begin{array}{*{20}{c}} 3&{\sqrt 3 }\\ {\sqrt 3 }&1 \end{array}} \right)\left( \begin{array}{l} x\\ y \end{array} \right) = \left( \begin{array}{l} 0\\ 0 \end{array} \right)     M1

\left( \begin{array}{l} x\\ y \end{array} \right) = (any multiple of) \left( {\begin{array}{*{20}{c}} 1\\ { - \sqrt 3 } \end{array}} \right)     A1

second eigenvector satisfies

\left( {\begin{array}{*{20}{c}} { - 1}&{\sqrt 3 }\\ {\sqrt 3 }&{ - 3} \end{array}} \right)\left( \begin{array}{l} x\\ y \end{array} \right) = \left( \begin{array}{l} 0\\ 0 \end{array} \right)

\left( \begin{array}{l} x\\ y \end{array} \right) = (any multiple of ) \left( {\begin{array}{*{20}{c}} {\sqrt 3 }\\ 1 \end{array}} \right)     A1

[7 marks]

b.

(i)     consider the rotation in which (x,y) is transformed onto (x',y') defined by

\left( \begin{array}{l} {x'}\\ {y'} \end{array} \right) = \left( {\begin{array}{*{20}{c}} {\frac{1}{2}}&{ - \frac{{\sqrt 3 }}{2}}\\ {\frac{{\sqrt 3 }}{2}}&{\frac{1}{2}} \end{array}} \right)\left( \begin{array}{l} x\\ y \end{array} \right) so that \left( \begin{array}{l} x\\ y \end{array} \right) = \left( {\begin{array}{*{20}{c}} {\frac{1}{2}}&{\frac{{\sqrt 3 }}{2}}\\ { - \frac{{\sqrt 3 }}{2}}&{\frac{1}{2}} \end{array}} \right)\left( \begin{array}{l} {x'}\\ {y'} \end{array} \right)     M1A1

the ellipse E becomes

\left( {\begin{array}{*{20}{c}} {x'}&{y'} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {\frac{1}{2}}&{ - \frac{{\sqrt 3 }}{2}}\\ {\frac{{\sqrt 3 }}{2}}&{\frac{1}{2}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {11}&{\sqrt 3 }\\ {\sqrt 3 }&9 \end{array}} \right)\left( {\begin{array}{*{20}{c}} {\frac{1}{2}}&{\frac{{\sqrt 3 }}{2}}\\ { - \frac{{\sqrt 3 }}{2}}&{\frac{1}{2}} \end{array}} \right)\left( \begin{array}{l} {x'}\\ {y'} \end{array} \right) = 24     M1A1

\left( {\begin{array}{*{20}{c}} {x'}&{y'} \end{array}} \right)\left( {\begin{array}{*{20}{c}} 8&0\\ 0&{12} \end{array}} \right)\left( \begin{array}{l} {x'}\\ {y'} \end{array} \right) = 24     A1

2{(x')^2} + 3{(y')^2} = 6    AG

 

(ii)     the angle of rotation is given by \cos \theta  = \frac{1}{2},\sin \theta  = \frac{{\sqrt 3 }}{2}     M1

since a rotational matrix has the form \left( {\begin{array}{*{20}{c}} {\cos \theta }&{ - \sin \theta }\\ {\sin \theta }&{\cos \theta } \end{array}} \right)

so \theta  = {60^ \circ } (anticlockwise)     A1

[7 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 2 - Geometry » 2.8 » The general conic a{x^2} + 2bxy + c{y^2} + dx + ey + f = 0 and the quadratic form {x^{\text{T}}}Ax = a{x^2} + 2bxy + c{y^2} .

View options