User interface language: English | Español

Date None Specimen Marks available 3 Reference code SPNone.1.hl.TZ0.9
Level HL only Paper 1 Time zone TZ0
Command term Determine Question number 9 Adapted from N/A

Question

Consider the system of equations \[\left( {\begin{array}{*{20}{c}}
1&{ - 1}&2\\
2&2&{ - 1}\\
3&5&{ - 4}\\
3&1&1
\end{array}} \right)\left( \begin{array}{l}
x\\
y\\
z
\end{array} \right) = \left( \begin{array}{l}
5\\
3\\
1\\
k
\end{array} \right) .\]

By reducing the augmented matrix to row echelon form,

  (i)     find the rank of the coefficient matrix;

  (ii)     find the value of \(k\) for which the system has a solution.

[5]
a.

For this value of \(k\) , determine the solution.

[3]
b.

Markscheme

reducing to row echelon form

\(\begin{array}{*{20}{ccc|c}}
  1&{ - 1}&2&5 \\
  0&4&{ - 5}&{ - 7} \\
  0&8&{ - 10}&{ - 14} \\
  0&4&{ - 5}&{k - 15}
\end{array}\)     (M1)(A1)

\(\begin{array}{*{20}{ccc|c}}
  1&{ - 2}&2&5 \\
  0&4&{ - 5}&{ - 7} \\
  0&0&0&0 \\
  0&0&0&{k - 8}
\end{array}\)     A1

(i)     this shows that the rank of the matrix is \(2\)    A1

(ii)     the equations can be solved if \(k = 8\)     A1

[5 marks]

a.

let \(z = \lambda \)      A1

then \(y = \frac{{5\lambda  - 7}}{4}\)     A1

and \(x = \left( {5 - 2\lambda  + \frac{{5\lambda  - 7}}{4} = } \right)\frac{{13 - 3\lambda }}{4}\)     A1

Note: Accept equivalent expressions.

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 1 - Linear Algebra » 1.3 » Elementary row and column operations for matrices.

View options