Processing math: 8%

User interface language: English | Español

Date May 2008 Marks available 5 Reference code 08M.2.hl.TZ0.2
Level HL only Paper 2 Time zone TZ0
Command term Determine Question number 2 Adapted from N/A

Question

The function f is defined by f(x)=ln(1+sinx) .

When a scientist measures the concentration μ of a solution, the measurement obtained may be assumed to be a normally distributed random variable with mean μ and standard deviation 1.6.

Show that f .

[4]
A.a.

Determine the Maclaurin series for f(x) as far as the term in {x^4} .

[6]
A.b.

Deduce the Maclaurin series for \ln (1 - \sin x) as far as the term in {x^4} .

[2]
A.c.

By combining your two series, show that \ln \sec x = \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{12}} +  \ldots .

[4]
A.d.

Hence, or otherwise, find \mathop {\lim }\limits_{x \to 0} \frac{{\ln \sec x}}{{x\sqrt x }} .

[2]
A.e.

He makes 5 independent measurements of the concentration of a particular solution and correctly calculates the following confidence interval for \mu .

[22.7 , 26.1]

Determine the confidence level of this interval.

[5]
B.a.

He is now given a different solution and is asked to determine a 95\% confidence interval for its concentration. The confidence interval is required to have a width less than 2. Find the minimum number of independent measurements required.

[5]
B.b.

Markscheme

f'(x) = \frac{{\cos x}}{{1 + \sin x}}     M1A1

f''(x) = \frac{{ - \sin x(1 + \sin x) - {{\cos }^2}x}}{{{{(1 + \sin x)}^2}}}     M1

= \frac{{ - \sin x - 1}}{{{{(1 + \sin x)}^2}}}     A1

= \frac{{ - 1}}{{1 + \sin x}}     AG

[4 marks]

A.a.

f'''(x) = \frac{{\cos x}}{{{{(1 + \sin x)}^2}}}     A1

{f^{iv}}(x) = \frac{{ - \sin x{{(1 + \sin x)}^2} - 2(1 + \sin x){{\cos }^2}x}}{{{{(1 + \sin x)}^4}}}     A1

f(0) = 0f'(0) = 1 , f''(0) =  - 1 , f'''(0) = 1 , {f^{iv}}(0) = - 2     (A2)

Note: Award A1 for 2 errors and A0 for more than 2 errors.

\ln (1 + \sin x) = x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{6} - \frac{{{x^4}}}{{12}} +  \ldots      M1A1

[6 marks]

A.b.

\ln (1 - \sin x) = \ln (1 + \sin ( - x)) =  - x - \frac{{{x^2}}}{2} - \frac{{{x^3}}}{6} - \frac{{{x^4}}}{{12}} +  \ldots      M1A1

[2 marks]

A.c.

Adding,     M1

\ln (1 - {\sin ^2}x) = \ln {\cos ^2}x     A1

= - {x^2} - \frac{{{x^4}}}{6} +  \ldots      A1

\ln \cos x = - \frac{{{x^2}}}{2} - \frac{{{x^4}}}{{12}} +  \ldots      A1

\ln \sec x = \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{12}} +  \ldots     AG

[4 marks]

A.d.

\frac{{\ln \sec x}}{{x\sqrt x }} = \frac{{\sqrt x }}{2} + \frac{{{x^2}\sqrt x }}{{12}} +  \ldots      M1

Limit = 0     A1

[2 marks]

A.e.

Interval width = 26.1 - 22.7 = 3.4

So 3.4 = 2z \times \frac{{1.6}}{{\sqrt 5 }}     M1A1

z = 2.375 \ldots      A1

Probability = 0.9912     A1

Confidence level = 2 \times 0.4912 = 98.2\%      A1

[5 marks]

B.a.

z-value = 1.96     A1

We require

2 \times \frac{{1.96 \times 1.6}}{{\sqrt n }} < 2     M1A1

Whence n > 9.83     A1

So we need n = 10     A1

Note: Accept = signs throughout.

[5 marks]

B.b.

Examiners report

[N/A]
A.a.
[N/A]
A.b.
[N/A]
A.c.
[N/A]
A.d.
[N/A]
A.e.
[N/A]
B.a.
[N/A]
B.b.

Syllabus sections

Topic 3 - Statistics and probability » 3.5 » Confidence intervals for the mean of a normal population.

View options