Date | May 2008 | Marks available | 5 | Reference code | 08M.2.hl.TZ0.2 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Determine | Question number | 2 | Adapted from | N/A |
Question
The function f is defined by f(x)=ln(1+sinx) .
When a scientist measures the concentration μ of a solution, the measurement obtained may be assumed to be a normally distributed random variable with mean μ and standard deviation 1.6.
Show that f″ .
Determine the Maclaurin series for f(x) as far as the term in {x^4} .
Deduce the Maclaurin series for \ln (1 - \sin x) as far as the term in {x^4} .
By combining your two series, show that \ln \sec x = \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{12}} + \ldots .
Hence, or otherwise, find \mathop {\lim }\limits_{x \to 0} \frac{{\ln \sec x}}{{x\sqrt x }} .
He makes 5 independent measurements of the concentration of a particular solution and correctly calculates the following confidence interval for \mu .
[22.7 , 26.1]
Determine the confidence level of this interval.
He is now given a different solution and is asked to determine a 95\% confidence interval for its concentration. The confidence interval is required to have a width less than 2. Find the minimum number of independent measurements required.
Markscheme
f'(x) = \frac{{\cos x}}{{1 + \sin x}} M1A1
f''(x) = \frac{{ - \sin x(1 + \sin x) - {{\cos }^2}x}}{{{{(1 + \sin x)}^2}}} M1
= \frac{{ - \sin x - 1}}{{{{(1 + \sin x)}^2}}} A1
= \frac{{ - 1}}{{1 + \sin x}} AG
[4 marks]
f'''(x) = \frac{{\cos x}}{{{{(1 + \sin x)}^2}}} A1
{f^{iv}}(x) = \frac{{ - \sin x{{(1 + \sin x)}^2} - 2(1 + \sin x){{\cos }^2}x}}{{{{(1 + \sin x)}^4}}} A1
f(0) = 0 , f'(0) = 1 , f''(0) = - 1 , f'''(0) = 1 , {f^{iv}}(0) = - 2 (A2)
Note: Award A1 for 2 errors and A0 for more than 2 errors.
\ln (1 + \sin x) = x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{6} - \frac{{{x^4}}}{{12}} + \ldots M1A1
[6 marks]
\ln (1 - \sin x) = \ln (1 + \sin ( - x)) = - x - \frac{{{x^2}}}{2} - \frac{{{x^3}}}{6} - \frac{{{x^4}}}{{12}} + \ldots M1A1
[2 marks]
Adding, M1
\ln (1 - {\sin ^2}x) = \ln {\cos ^2}x A1
= - {x^2} - \frac{{{x^4}}}{6} + \ldots A1
\ln \cos x = - \frac{{{x^2}}}{2} - \frac{{{x^4}}}{{12}} + \ldots A1
\ln \sec x = \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{12}} + \ldots AG
[4 marks]
\frac{{\ln \sec x}}{{x\sqrt x }} = \frac{{\sqrt x }}{2} + \frac{{{x^2}\sqrt x }}{{12}} + \ldots M1
Limit = 0 A1
[2 marks]
Interval width = 26.1 - 22.7 = 3.4
So 3.4 = 2z \times \frac{{1.6}}{{\sqrt 5 }} M1A1
z = 2.375 \ldots A1
Probability = 0.9912 A1
Confidence level = 2 \times 0.4912 = 98.2\% A1
[5 marks]
z-value = 1.96 A1
We require
2 \times \frac{{1.96 \times 1.6}}{{\sqrt n }} < 2 M1A1
Whence n > 9.83 A1
So we need n = 10 A1
Note: Accept = signs throughout.
[5 marks]