User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.2.hl.TZ0.7
Level HL only Paper 2 Time zone TZ0
Command term Show that Question number 7 Adapted from N/A

Question

A new triangle DEF is positioned within a circle radius R such that DF is a diameter as shown in the following diagram.

In a triangle ABC, prove \(\frac{a}{{{\text{sin}}\,A}} = \frac{b}{{{\text{sin}}\,B}} = \frac{c}{{{\text{sin}}\,C}}\).

[4]
a.i.

Prove that the area of the triangle ABC is \(\frac{1}{2}ab\,{\text{sin}}\,{\text{C}}\).

[2]
a.ii.

Given that R denotes the radius of the circumscribed circle prove that \(\frac{a}{{{\text{sin}}\,A}} = \frac{b}{{{\text{sin}}\,B}} = \frac{c}{{{\text{sin}}\,C}} = 2R\).

[2]
a.iii.

Hence show that the area of the triangle ABC is \(\frac{{abc}}{{4R}}\).

[2]
a.iv.

Find in terms of R, the two values of (DE)2 such that the area of the shaded region is twice the area of the triangle DEF.

[9]
b.i.

Using two diagrams, explain why there are two values of (DE)2.

[2]
b.ii.

A parallelogram is positioned inside a circle such that all four vertices lie on the circle. Prove that it is a rectangle.

[3]
c.

Markscheme

\({\text{sin}}\,{\text{B}} = \frac{h}{c}\) and \({\text{sin}}\,{\text{C}} = \frac{h}{b}\)      M1A1

hence \(h = c\,{\text{sin}}\,{\text{B}} = b\,{\text{sin}}\,{\text{C}}\)      A1

by dropping a perpendicular from B, in exactly the same way we find \(c\,{\text{sin}}\,{\text{A}} = a\,{\text{sin}}\,{\text{C}}\)      R1

hence \(\frac{a}{{{\text{sin}}\,A}} = \frac{b}{{{\text{sin}}\,B}} = \frac{c}{{{\text{sin}}\,C}}\)

[4 marks]

a.i.

area = \(\frac{1}{2}ah\)      M1A1

= \(\frac{1}{2}ab\,{\text{sin}}\,{\text{C}}\)      AG

[2 marks]

a.ii.

since the angle at the centre of circle is twice the angle at the circumference \({\text{sin}}\,A = \frac{a}{{2R}}\)         M1A1

hence \(\frac{a}{{{\text{sin}}\,A}} = 2R\) and therefore \(\frac{a}{{{\text{sin}}\,A}} = \frac{b}{{{\text{sin}}\,B}} = \frac{c}{{{\text{sin}}\,C}} = 2R\)      AG

[2 marks]

a.iii.

area of the triangle is \(\frac{1}{2}ab\,{\text{sin}}\,{\text{C}}\)      M1

since \({\text{sin}}\,{\text{C}} = \frac{c}{{2R}}\)        A1

area of the triangle is \(\frac{1}{2}ab\,\frac{c}{{2R}} = \frac{{abc}}{{4R}}\)      AG

[2 marks]

a.iv.

area of the triangle is \(\frac{{\pi {R^2}}}{6}\)      (M1)A1

(DE)+ (EF)2 = 4R      M1

(DE)= 4R2 −  (EF)2 

\(\frac{1}{2}\left( {{\text{DE}}} \right)\left( {{\text{EF}}} \right) = \frac{{\pi {R^2}}}{6} \Rightarrow \left( {{\text{EF}}} \right) = \frac{{\pi {R^2}}}{{3\left( {{\text{DE}}} \right)}}\)      M1A1

\({\left( {{\text{DE}}} \right)^2} = 4{R^2} - \frac{{{\pi ^2}{R^4}}}{{9{{\left( {{\text{DE}}} \right)}^2}}}\)      A1

\(9{\left( {{\text{DE}}} \right)^4} - 36{\left( {{\text{DE}}} \right)^2}{R^2} + {\pi ^2}{R^4} = 0\)      A1 

\({\left( {{\text{DE}}} \right)^2} = \frac{{36{R^2} \pm \sqrt {1296{R^4} - 36{\pi ^2}{R^4}} }}{{18}}\)     M1

\({\left( {{\text{DE}}} \right)^2} = \frac{{36{R^2} \pm 6{R^2}\sqrt {36 - {\pi ^2}} }}{{18}}\left( { = \frac{{6{R^2} \pm {R^2}\sqrt {36 - {\pi ^2}} }}{3}} \right)\)      A1

[9 marks]

b.i.

      A1A1

[2 marks]

b.ii.

\(\mathop {\text{A}}\limits^ \wedge   + \mathop {\text{C}}\limits^ \wedge   = 180^\circ \) (cyclic quadrilateral)      R1

however \(\mathop {\text{A}}\limits^ \wedge   = \mathop {\text{C}}\limits^ \wedge  \) (ABCD is a parallelogram)       R1

\(\mathop {\text{A}}\limits^ \wedge   = \mathop {\text{C}}\limits^ \wedge   = 90^\circ \)        A1

\(\mathop {\text{B}}\limits^ \wedge   = \mathop {\text{D}}\limits^ \wedge   = 90^\circ \)

hence ABCD is a rectangle        AG

[3 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
a.iv.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.

Syllabus sections

Topic 2 - Geometry » 2.2 » Centres of a triangle: orthocentre, incentre, circumcentre and centroid.

View options