Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.2.hl.TZ0.7
Level HL only Paper 2 Time zone TZ0
Command term Show that Question number 7 Adapted from N/A

Question

A new triangle DEF is positioned within a circle radius R such that DF is a diameter as shown in the following diagram.

In a triangle ABC, prove asinA=bsinB=csinC.

[4]
a.i.

Prove that the area of the triangle ABC is 12absinC.

[2]
a.ii.

Given that R denotes the radius of the circumscribed circle prove that asinA=bsinB=csinC=2R.

[2]
a.iii.

Hence show that the area of the triangle ABC is abc4R.

[2]
a.iv.

Find in terms of R, the two values of (DE)2 such that the area of the shaded region is twice the area of the triangle DEF.

[9]
b.i.

Using two diagrams, explain why there are two values of (DE)2.

[2]
b.ii.

A parallelogram is positioned inside a circle such that all four vertices lie on the circle. Prove that it is a rectangle.

[3]
c.

Markscheme

sinB=hc and sinC=hb      M1A1

hence h=csinB=bsinC      A1

by dropping a perpendicular from B, in exactly the same way we find csinA=asinC      R1

hence asinA=bsinB=csinC

[4 marks]

a.i.

area = 12ah      M1A1

12absinC      AG

[2 marks]

a.ii.

since the angle at the centre of circle is twice the angle at the circumference sinA=a2R         M1A1

hence asinA=2R and therefore asinA=bsinB=csinC=2R      AG

[2 marks]

a.iii.

area of the triangle is 12absinC      M1

since sinC=c2R        A1

area of the triangle is 12abc2R=abc4R      AG

[2 marks]

a.iv.

area of the triangle is πR26      (M1)A1

(DE)+ (EF)2 = 4R      M1

(DE)= 4R2 −  (EF)2 

12(DE)(EF)=πR26(EF)=πR23(DE)      M1A1

(DE)2=4R2π2R49(DE)2      A1

9(DE)436(DE)2R2+π2R4=0      A1 

(DE)2=36R2±1296R436π2R418     M1

(DE)2=36R2±6R236π218(=6R2±R236π23)      A1

[9 marks]

b.i.

      A1A1

[2 marks]

b.ii.

A+C=180 (cyclic quadrilateral)      R1

however A=C (ABCD is a parallelogram)       R1

A=C=90        A1

B=D=90

hence ABCD is a rectangle        AG

[3 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
a.iv.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.

Syllabus sections

Topic 2 - Geometry » 2.2 » Centres of a triangle: orthocentre, incentre, circumcentre and centroid.

View options