User interface language: English | Español

Date May 2018 Marks available 5 Reference code 18M.2.hl.TZ0.6
Level HL only Paper 2 Time zone TZ0
Command term Determine Question number 6 Adapted from N/A

Question

The set of all integer s from 0 to 99 inclusive is denoted by S. The binary operations \( * \) and \( \circ \) are defined on S by

\(a * b = \left[ {a + b + 20} \right]\)(mod 100)

\(a \circ b = \left[ {a + b - 20} \right]\)(mod 100).

The equivalence relation R is defined by \(aRb \Leftrightarrow \left( {{\text{sin}}\frac{{\pi a}}{5} = {\text{sin}}\frac{{\pi b}}{5}} \right)\).

Find the identity element of S with respect to \( * \).

[3]
a.

Show that every element of S has an inverse with respect to \( * \).

[2]
b.

State which elements of S are self-inverse with respect to \( * \).

[2]
c.

Prove that the operation \( \circ \) is not distributive over \( * \).

[5]
d.

Determine the equivalence classes into which R partitions S, giving the first four elements of each class.

[5]
e.

Find two elements in the same equivalence class which are inverses of each other with respect to \( * \).

[2]
f.

Markscheme

\(a + e + 20 = a\)(mod 100)     (M1)

\(e =  - 20\)(mod 100)       (A1)

\(e = 80\)      A1

[3 marks]

a.

\(a + {a^{ - 1}} + 20 = 80\)(mod 100)     (M1)

inverse of \(a\) is \(60 - a\) (mod 100)        A1

[2 marks]

b.

30 and 80       A1A1

[2 marks]

c.

\(a \circ \left( {b * c} \right) = a \circ \left( {b + c + 20} \right)\)(mod 100)

\( = a + \left( {b + c + 20} \right) - 20\)(mod 100)      (M1)

\( = a + b + c\)(mod 100)      A1

\(\left( {a \circ b} \right) * \left( {a \circ c} \right) = \left( {a + b - 20} \right) * \left( {a + c - 20} \right)\)(mod 100)      M1

\( = a + b - 20 + a + c - 20 + 20\)(mod 100)

\( = 2a + b + c - 20\)(mod 100)      A1

hence we have shown that \(a \circ \left( {b * c} \right) \ne \left( {a \circ b} \right) * \left( {a \circ c} \right)\)      R1

hence the operation \( \circ \) is not distributive over \( * \)      AG

Note: Accept a counterexample.

[5 marks]

 

d.

{0,5,10,15...}      A1

{1,4,11,14...}      A1

{2,3,12,13...}      A1

{6,9,16,19...}      A1

{7,8,17,18...}      A1

[5 marks]

 

e.

for example 10 and 50, 20 and 40, 0 and 60…     A2

[2 marks]

 

f.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.

Syllabus sections

Topic 4 - Sets, relations and groups » 4.2 » Ordered pairs: the Cartesian product of two sets.

View options