User interface language: English | Español

Date None Specimen Marks available 3 Reference code SPNone.2.hl.TZ0.1
Level HL only Paper 2 Time zone TZ0
Command term Determine and Interpret Question number 1 Adapted from N/A

Question

The relation \(R\) is defined on \({\mathbb{R}^ + } \times {\mathbb{R}^ + }\) such that \(({x_1},{y_1})R({x_2},{y_2})\) if and only if \(\frac{{{x_1}}}{{{x_2}}} = \frac{{{y_2}}}{{{y_1}}}\) .

Show that \(R\) is an equivalence relation.

[6]
a.

Determine the equivalence class containing \(({x_1},{y_1})\) and interpret it geometrically.

[3]
b.

Markscheme

\(\frac{{{x_1}}}{{{x_1}}} = \frac{{{y_1}}}{{{y_1}}} \Rightarrow ({x_1},{y_1})R({x_1},{y_1})\) so \(R\) is reflexive     R1

\(({x_1},{y_1})R({x_2},{y_2}) \Rightarrow \frac{{{x_1}}}{{{x_2}}} = \frac{{{y_2}}}{{{y_1}}} \Rightarrow \frac{{{x_2}}}{{{x_1}}} = \frac{{{y_1}}}{{{y_2}}} \Rightarrow ({x_2},{y_2})R({x_1},{y_1})\)     M1A1

so \(R\) is symmetric

\(({x_1},{y_1})R({x_2},{y_2})\) and  \(({x_2},{y_2})R({x_3},{y_3}) \Rightarrow \frac{{{x_1}}}{{{x_2}}} = \frac{{{y_2}}}{{{y_1}}}\) and \(\frac{{{x_2}}}{{{x_3}}} = \frac{{{y_3}}}{{{y_2}}}\)     M1

multiplying the two equations,     M1

\( \Rightarrow \frac{{{x_1}}}{{{x_3}}} = \frac{{{y_3}}}{{{y_1}}} \Rightarrow ({x_1},{y_1})R({x_3},{y_3})\) so \(R\) is transitive     A1

thus \(R\) is an equivalence relation     AG

[6 marks]

a.

\((x,y)R({x_1},{y_1}) \Rightarrow \frac{{{x_{}}}}{{{x_1}}} = \frac{{{y_1}}}{{{y_{}}}} \Rightarrow xy = {x_1}{y_1}\)     (M1)

the equivalence class is therefore \(\left\{ {(x,y)|xy = {x_1}{y_1}} \right\}\)     A1

geometrically, the equivalence class is (one branch of) a (rectangular) hyperbola     A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 4 - Sets, relations and groups » 4.2 » Ordered pairs: the Cartesian product of two sets.

View options