Date | May 2018 | Marks available | 5 | Reference code | 18M.1.hl.TZ0.10 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Describe | Question number | 10 | Adapted from | N/A |
Question
By considering the images of the points (1, 0) and (0, 1),
determine the 2 × 2 matrix P which represents a reflection in the line \(y = \left( {{\text{tan}}\,\theta } \right)x\).
determine the 2 × 2 matrix Q which represents an anticlockwise rotation of θ about the origin.
Describe the transformation represented by the matrix PQ.
A matrix M is said to be orthogonal if M TM = I where I is the identity. Show that Q is orthogonal.
Markscheme
(M1)
using the transformation of the unit square:
\(\left( \begin{gathered}
1 \hfill \\
0 \hfill \\
\end{gathered} \right) \to \left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,2\theta } \\
{{\text{sin}}\,2\theta }
\end{array}} \right)\) and \(\left( \begin{gathered}
0 \hfill \\
1 \hfill \\
\end{gathered} \right) \to \left( {\begin{array}{*{20}{c}}
{{\text{sin}}\,2\theta } \\
{ - {\text{cos}}\,2\theta }
\end{array}} \right)\) (M1)
hence the matrix P is \(\left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,2\theta } \\
{{\text{sin}}\,2\theta }
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
{{\text{sin}}\,2\theta } \\
{ - {\text{cos}}\,2\theta }
\end{array}} \right)\) A1
[3 marks]
using the transformation of the unit square:
\(\left( \begin{gathered}
1 \hfill \\
0 \hfill \\
\end{gathered} \right) \to \left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,\theta } \\
{{\text{sin}}\,\theta }
\end{array}} \right)\) and \(\left( \begin{gathered}
0 \hfill \\
1 \hfill \\
\end{gathered} \right) \to \left( {\begin{array}{*{20}{c}}
{ - {\text{sin}}\,\theta } \\
{{\text{cos}}\,\theta }
\end{array}} \right)\) (M1)
hence the matrix Q is \(\left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,\theta } \\
{{\text{sin}}\,\theta }
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
{ - {\text{sin}}\,\theta } \\
{{\text{cos}}\,\theta }
\end{array}} \right)\) A1
[2 marks]
PQ = \(\left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,\theta \,{\text{cos}}\,2\theta + {\text{sin}}\,\theta \,{\text{sin}}\,2\theta } \\
{ - {\text{cos}}\,2\theta \,{\text{sin}}\,\theta + \,{\text{sin}}\,2\theta \,{\text{cos}}\,\theta }
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
{{\text{cos}}\,\theta \,{\text{sin}}\,2\theta \, - {\text{sin}}\,\theta \,{\text{cos}}\,2\theta } \\
{ - {\text{sin}}\,\theta \,{\text{sin}}\,2\theta - {\text{cos}}\,\theta \,{\text{cos}}\,2\theta \,}
\end{array}} \right)\) M1A1
\( = \left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,\left( {2\theta - \theta } \right)} \\
{{\text{sin}}\,\left( {2\theta - \theta } \right)}
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
{{\text{sin}}\,\left( {2\theta - \theta } \right)} \\
{ - {\text{cos}}\,\left( {2\theta - \theta } \right)}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,\theta } \\
{{\text{sin}}\,\theta }
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
{{\text{sin}}\,\theta } \\
{ - {\text{cos}}\,\theta }
\end{array}} \right)\) M1A1
this is a reflection in the line \(y = \left( {{\text{tan}}\,\frac{1}{2}\theta } \right)x\) A1
[5 marks]
Q TQ = \(\left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,\theta } \\
{ - {\text{sin}}\,\theta }
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
{{\text{sin}}\,\theta } \\
{{\text{cos}}\,\theta }
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{\text{cos}}\,\theta } \\
{{\text{sin}}\,\theta }
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
{ - {\text{sin}}\,\theta } \\
{{\text{cos}}\,\theta }
\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}
{{\text{co}}{{\text{s}}^2}\,\theta + {\text{si}}{{\text{n}}^2}\,\theta } \\
{ - {\text{sin}}\,\theta \,{\text{cos}}\,\theta + {\text{cos}}\,\theta \,{\text{sin}}\,\theta }
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
{ - {\text{cos}}\,\theta \,{\text{sin}}\,\theta + {\text{cos}}\,\theta \,{\text{sin}}\,\theta } \\
{{\text{si}}{{\text{n}}^2}\,\theta + {\text{co}}{{\text{s}}^2}\,\theta }
\end{array}} \right)\) M1A1
\( = \left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right)\) AG
[2 marks]