Date | May 2018 | Marks available | 5 | Reference code | 18M.1.hl.TZ0.10 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Describe | Question number | 10 | Adapted from | N/A |
Question
By considering the images of the points (1, 0) and (0, 1),
determine the 2 × 2 matrix P which represents a reflection in the line y=(tanθ)x.
determine the 2 × 2 matrix Q which represents an anticlockwise rotation of θ about the origin.
Describe the transformation represented by the matrix PQ.
A matrix M is said to be orthogonal if M TM = I where I is the identity. Show that Q is orthogonal.
Markscheme
(M1)
using the transformation of the unit square:
(10)→(cos2θsin2θ) and (01)→(sin2θ−cos2θ) (M1)
hence the matrix P is (cos2θsin2θsin2θ−cos2θ) A1
[3 marks]
using the transformation of the unit square:
(10)→(cosθsinθ) and (01)→(−sinθcosθ) (M1)
hence the matrix Q is (cosθsinθ−sinθcosθ) A1
[2 marks]
PQ = (cosθcos2θ+sinθsin2θ−cos2θsinθ+sin2θcosθcosθsin2θ−sinθcos2θ−sinθsin2θ−cosθcos2θ) M1A1
=(cos(2θ−θ)sin(2θ−θ)sin(2θ−θ)−cos(2θ−θ))=(cosθsinθsinθ−cosθ) M1A1
this is a reflection in the line y=(tan12θ)x A1
[5 marks]
Q TQ = (cosθ−sinθsinθcosθ)(cosθsinθ−sinθcosθ)
=(cos2θ+sin2θ−sinθcosθ+cosθsinθ−cosθsinθ+cosθsinθsin2θ+cos2θ) M1A1
=(1001) AG
[2 marks]