Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.1.hl.TZ0.10
Level HL only Paper 1 Time zone TZ0
Command term Determine Question number 10 Adapted from N/A

Question

By considering the images of the points (1, 0) and (0, 1),

determine the 2 × 2 matrix P which represents a reflection in the line y=(tanθ)x.

[3]
a.i.

determine the 2 × 2 matrix Q which represents an anticlockwise rotation of θ about the origin.

[2]
a.ii.

Describe the transformation represented by the matrix PQ.

[5]
b.

A matrix M is said to be orthogonal if M TM = I where I is the identity. Show that Q is orthogonal.

[2]
c.

Markscheme

      (M1)

using the transformation of the unit square:

(10)(cos2θsin2θ) and (01)(sin2θcos2θ)       (M1)

hence the matrix P is (cos2θsin2θsin2θcos2θ)       A1

[3 marks]

a.i.

using the transformation of the unit square:

(10)(cosθsinθ) and (01)(sinθcosθ)      (M1)

hence the matrix Q is (cosθsinθsinθcosθ)      A1

[2 marks]

a.ii.

PQ = (cosθcos2θ+sinθsin2θcos2θsinθ+sin2θcosθcosθsin2θsinθcos2θsinθsin2θcosθcos2θ)      M1A1

=(cos(2θθ)sin(2θθ)sin(2θθ)cos(2θθ))=(cosθsinθsinθcosθ)     M1A1

this is a reflection in the line y=(tan12θ)x      A1

[5 marks]

b.

Q TQ = (cosθsinθsinθcosθ)(cosθsinθsinθcosθ)

=(cos2θ+sin2θsinθcosθ+cosθsinθcosθsinθ+cosθsinθsin2θ+cos2θ)      M1A1

=(1001)      AG

[2 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 1 - Linear Algebra » 1.6 » Linear transformations: T(u+v)=T(u)+T(v) , T(ku)=kT(u) .

View options