Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 1 Reference code 18M.1.hl.TZ0.8
Level HL only Paper 1 Time zone TZ0
Command term Explain Question number 8 Adapted from N/A

Question

Consider the simultaneous linear equations

x+z=1
3x+y+2z=1
2x+ayz=b

where a and b are constants.

Using row reduction, find the solutions in terms of a and b when a ≠ 3 .

[8]
a.

Explain why the equations have no unique solution when a = 3.

[1]
b.

Find all the solutions to the equations when a = 3, b = 10 in the form r = s + λt.

[4]
c.

Markscheme

\(\left( {\begin{array}{*{20}{c}}
1 \\
3 \\
2

\end{array}\,\,\begin{array}{*{20}{c}}

0 \\ 

1 \\
a

\end{array}\,\,\begin{array}{*{20}{c}}

1 \\

2 \\

{-1}

\end{array}\,\,11b} \right) \Rightarrow \left( {13a22\,\,\begin{array}{*{20}{c}}

0 \\
0 \\

a
\end{array}\,\,\begin{array}{*{20}{c}}

1 \\

{2a+1} \\

{-1}

\end{array}\,\,1abb} \right)\) or equivalent        M1A1

(13a2200aa32a+114a+2+babb)

z=4a+b+2a3      M1A1

x=1z      M1

x=1(4a+b+2a3)

x=a+3+4ab2a3

x=3ab+1a3      A1

y=13x2z       M1

y=13(3ab+1a3)2(4a+b+2a3)

=a39a+3b3+8a2b4a3

=b10a3     A1

[8 marks]

a.

when a = 3 the denominator of xy and z = 0      R1

Note: Accept any valid reason.

hence no unique solutions       AG

[1 mark]

b.

For example let z=λ      (M1)

x=1λ      (A1)

y=13(1λ)2λ

y=4+λ      (A1)

r(140)+λ(111)      A1

[4 marks]

Note: Accept answers which let x=λ or y=λ.

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 1 - Linear Algebra » 1.4 » Solutions of m linear equations in n unknowns: both augmented matrix method, leading to reduced row echelon form method, and inverse matrix method, when applicable.

View options